• 제목/요약/키워드: Computer-aided Diagnosis(CADx) Systems

검색결과 2건 처리시간 0.016초

위 내시경 영상을 이용한 병변 진단을 위한 딥러닝 기반 컴퓨터 보조 진단 시스템 (Deep Learning based Computer-aided Diagnosis System for Gastric Lesion using Endoscope)

  • 김동현;조현종
    • 전기학회논문지
    • /
    • 제67권7호
    • /
    • pp.928-933
    • /
    • 2018
  • Nowadays, gastropathy is a common disease. As endoscopic equipment are developed and used widely, it is possible to provide a large number of endoscopy images. Computer-aided Diagnosis (CADx) systems aim at helping physicians to identify possibly malignant abnormalities more accurately. In this paper, we present a CADx system to detect and classify the abnormalities of gastric lesions which include bleeding, ulcer, neuroendocrine tumor and cancer. We used an Inception module based deep learning model. And we used data augmentation for learning. Our preliminary results demonstrated promising potential for automatically labeled region of interest for endoscopy doctors to focus on abnormal lesions for subsequent targeted biopsy, with Az values of Receiver Operating Characteristic(ROC) curve was 0.83. The proposed CADx system showed reliable performance.

As how artificial intelligence is revolutionizing endoscopy

  • Jean-Francois Rey
    • Clinical Endoscopy
    • /
    • 제57권3호
    • /
    • pp.302-308
    • /
    • 2024
  • With incessant advances in information technology and its implications in all domains of our lives, artificial intelligence (AI) has emerged as a requirement for improved machine performance. This brings forth the query of how this can benefit endoscopists and improve both diagnostic and therapeutic endoscopy in each part of the gastrointestinal tract. Additionally, it also raises the question of the recent benefits and clinical usefulness of this new technology in daily endoscopic practice. There are two main categories of AI systems: computer-assisted detection (CADe) for lesion detection and computer-assisted diagnosis (CADx) for optical biopsy and lesion characterization. Quality assurance is the next step in the complete monitoring of high-quality colonoscopies. In all cases, computer-aided endoscopy is used, as the overall results rely on the physician. Video capsule endoscopy is a unique example in which a computer operates a device, stores multiple images, and performs an accurate diagnosis. While there are many expectations, we need to standardize and assess various software packages. It is important for healthcare providers to support this new development and make its use an obligation in daily clinical practice. In summary, AI represents a breakthrough in digestive endoscopy. Screening for gastric and colonic cancer detection should be improved, particularly outside expert centers. Prospective and multicenter trials are mandatory before introducing new software into clinical practice.