• Title/Summary/Keyword: Computer vision technology

Search Result 685, Processing Time 0.022 seconds

Hardware Design of VLIW coprocessor for Computer Vision Application (컴퓨터 비전 응용을 위한 VLIW 보조프로세서의 하드웨어 설계)

  • Choi, Byeong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2189-2196
    • /
    • 2014
  • In this paper, a VLIW(Very Long Instruction Word) vision coprocessor which can efficiently accelerate computer vision algorithm for automotive is designed. The VLIW coprocessor executes four instructions per clock cycle via 8-stage pipelined structure and has 36 integer and floating-point instructions to accelerate computer vision algorithm for pedestrian detection. The processor has about 300-MHz operating frequency and about 210,900 gates under 45nm CMOS technology and its estimated performance is 1.2 GOPS(Giga Operations Per Second). The vision system composed of vision primitive engine and eight VLIW coprocessors can execute pedestrian detection at 25~29 frames per second(FPS). Because the VLIW coprocessor has high detection rate and loosely coupled interface with host processor, it can be efficiently applicable to a wide range of vision applications.

A computer vision-based approach for crack detection in ultra high performance concrete beams

  • Roya Solhmirzaei;Hadi Salehi;Venkatesh Kodur
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.341-348
    • /
    • 2024
  • Ultra-high-performance concrete (UHPC) has received remarkable attentions in civil infrastructure due to its unique mechanical characteristics and durability. UHPC gains increasingly dominant in essential structural elements, while its unique properties pose challenges for traditional inspection methods, as damage may not always manifest visibly on the surface. As such, the need for robust inspection techniques for detecting cracks in UHPC members has become imperative as traditional methods often fall short in providing comprehensive and timely evaluations. In the era of artificial intelligence, computer vision has gained considerable interest as a powerful tool to enhance infrastructure condition assessment with image and video data collected from sensors, cameras, and unmanned aerial vehicles. This paper presents a computer vision-based approach employing deep learning to detect cracks in UHPC beams, with the aim of addressing the inherent limitations of traditional inspection methods. This work leverages computer vision to discern intricate patterns and anomalies. Particularly, a convolutional neural network architecture employing transfer learning is adopted to identify the presence of cracks in the beams. The proposed approach is evaluated with image data collected from full-scale experiments conducted on UHPC beams subjected to flexural and shear loadings. The results of this study indicate the applicability of computer vision and deep learning as intelligent methods to detect major and minor cracks and recognize various damage mechanisms in UHPC members with better efficiency compared to conventional monitoring methods. Findings from this work pave the way for the development of autonomous infrastructure health monitoring and condition assessment, ensuring early detection in response to evolving structural challenges. By leveraging computer vision, this paper contributes to usher in a new era of effectiveness in autonomous crack detection, enhancing the resilience and sustainability of UHPC civil infrastructure.

Customer Activity Recognition System using Image Processing

  • Waqas, Maria;Nasir, Mauizah;Samdani, Adeel Hussain;Naz, Habiba;Tanveer, Maheen
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.63-66
    • /
    • 2021
  • The technological advancement in computer vision has made system like grab-and-go grocery a reality. Now all the shoppers have to do now is to walk in grab the items and go out without having to wait in the long queues. This paper presents an intelligent retail environment system that is capable of monitoring and tracking customer's activity during shopping based on their interaction with the shelf. It aims to develop a system that is low cost, easy to mount and exhibit adequate performance in real environment.

Retina-Motivated CMOS Vision Chip Based on Column Parallel Architecture and Switch-Selective Resistive Network

  • Kong, Jae-Sung;Hyun, Hyo-Young;Seo, Sang-Ho;Shin, Jang-Kyoo
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.783-789
    • /
    • 2008
  • A bio-inspired vision chip for edge detection was fabricated using 0.35 ${\mu}m$ double-poly four-metal complementary metal-oxide-semiconductor technology. It mimics the edge detection mechanism of a biological retina. This type of vision chip offer several advantages including compact size, high speed, and dense system integration. Low resolution and relatively high power consumption are common limitations of these chips because of their complex circuit structure. We have tried to overcome these problems by rearranging and simplifying their circuits. A vision chip of $160{\times}120$ pixels has been fabricated in $5{\times}5\;mm^2$ silicon die. It shows less than 10 mW of power consumption.

  • PDF

An Application of Computer Vision System for the Determination of Object Position in the Plane (평면상에 있는 물체 위치 결정을 위한 컴퓨터 비젼 시스템의 응용)

  • 장완식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.62-68
    • /
    • 1998
  • This paper presents the application of computer vision for the purpose of determining the position of the unknown object in the plane. The presented control method is to estimate the six view parameters representing the relationship between the image plane coordinates and the real physical coordinates. The estimation of six parameters is indispensable for transforming the 2-dimensional camera coordinates to the 3-dimensional spatial coordinates. Then, the position of unknown point is estimated based on the estimated parameters depending on the cameras. The suitability of this control scheme is demonstrated experimentally by determining position of the unknown object in the plane.

  • PDF

Unusual Motion Detection for Vision-Based Driver Assistance

  • Fu, Li-Hua;Wu, Wei-Dong;Zhang, Yu;Klette, Reinhard
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.27-34
    • /
    • 2015
  • For a vision-based driver assistance system, unusual motion detection is one of the important means of preventing accidents. In this paper, we propose a real-time unusual-motion-detection model, which contains two stages: salient region detection and unusual motion detection. In the salient-region-detection stage, we present an improved temporal attention model. In the unusual-motion-detection stage, three kinds of factors, the speed, the motion direction, and the distance, are extracted for detecting unusual motion. A series of experimental results demonstrates the proposed method and shows the feasibility of the proposed model.

Automatic indoor progress monitoring using BIM and computer vision

  • Deng, Yichuan;Hong, Hao;Luo, Han;Deng, Hui
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.252-259
    • /
    • 2017
  • Nowadays, the existing manual method for recording actual progress of the construction site has some drawbacks, such as great reliance on the experience of professional engineers, work-intensive, time consuming and error prone. A method integrating computer vision and BIM(Building Information Modeling) is presented for indoor automatic progress monitoring. The developed method can accurately calculate the engineering quantity of target component in the time-lapse images. Firstly, sample images of on-site target are collected for training the classifier. After the construction images are identified by edge detection and classifier, a voting algorithm based on mathematical geometry and vector operation will divide the target contour. Then, according to the camera calibration principle, the image pixel coordinates are conversed into the real world Coordinate and the real coordinates would be corrected with the help of the geometric information in BIM model. Finally, the actual engineering quantity is calculated.

  • PDF

Real-time geometry identification of moving ships by computer vision techniques in bridge area

  • Li, Shunlong;Guo, Yapeng;Xu, Yang;Li, Zhonglong
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.359-371
    • /
    • 2019
  • As part of a structural health monitoring system, the relative geometric relationship between a ship and bridge has been recognized as important for bridge authorities and ship owners to avoid ship-bridge collision. This study proposes a novel computer vision method for the real-time geometric parameter identification of moving ships based on a single shot multibox detector (SSD) by using transfer learning techniques and monocular vision. The identification framework consists of ship detection (coarse scale) and geometric parameter calculation (fine scale) modules. For the ship detection, the SSD, which is a deep learning algorithm, was employed and fine-tuned by ship image samples downloaded from the Internet to obtain the rectangle regions of interest in the coarse scale. Subsequently, for the geometric parameter calculation, an accurate ship contour is created using morphological operations within the saturation channel in hue, saturation, and value color space. Furthermore, a local coordinate system was constructed using projective geometry transformation to calculate the geometric parameters of ships, such as width, length, height, localization, and velocity. The application of the proposed method to in situ video images, obtained from cameras set on the girder of the Wuhan Yangtze River Bridge above the shipping channel, confirmed the efficiency, accuracy, and effectiveness of the proposed method.

Performance Analysis of DNN inference using OpenCV Built in CPU and GPU Functions (OpenCV 내장 CPU 및 GPU 함수를 이용한 DNN 추론 시간 복잡도 분석)

  • Park, Chun-Su
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.75-78
    • /
    • 2022
  • Deep Neural Networks (DNN) has become an essential data processing architecture for the implementation of multiple computer vision tasks. Recently, DNN-based algorithms achieve much higher recognition accuracy than traditional algorithms based on shallow learning. However, training and inference DNNs require huge computational capabilities than daily usage purposes of computers. Moreover, with increased size and depth of DNNs, CPUs may be unsatisfactory since they use serial processing by default. GPUs are the solution that come up with greater speed compared to CPUs because of their Parallel Processing/Computation nature. In this paper, we analyze the inference time complexity of DNNs using well-known computer vision library, OpenCV. We measure and analyze inference time complexity for three cases, CPU, GPU-Float32, and GPU-Float16.

Sorting for Plastic Bottles Recycling using Machine Vision Methods

  • SanaSadat Mirahsani;Sasan Ghasemipour;AmirAbbas Motamedi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.89-98
    • /
    • 2024
  • Due to the increase in population and consequently the increase in the production of plastic waste, recovery of this part of the waste is an undeniable necessity. On the other hand, the recycling of plastic waste, if it is placed in a systematic process and controlled, can be effective in creating jobs and maintaining environmental health. Waste collection in many large cities has become a major problem due to lack of proper planning with increasing waste from population accumulation and changing consumption patterns. Today, waste management is no longer limited to waste collection, but waste collection is one of the important areas of its management, i.e. training, segregation, collection, recycling and processing. In this study, a systematic method based on machine vision for sorting plastic bottles in different colors for recycling purposes will be proposed. In this method, image classification and segmentation techniques were presented to improve the performance of plastic bottle classification. Evaluation of the proposed method and comparison with previous works showed the proper performance of this method.