• 제목/요약/키워드: Computer optimization

검색결과 2,415건 처리시간 0.026초

PMDV-hop: An effective range-free 3D localization scheme based on the particle swarm optimization in wireless sensor network

  • Wang, Wenjuan;Yang, Yuwang;Wang, Lei;Lu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권1호
    • /
    • pp.61-80
    • /
    • 2018
  • Location information of individual nodes is important in the implementation of necessary network functions. While extensive studies focus on localization techniques in 2D space, few approaches have been proposed for 3D positioning, which brings the location closer to the reality with more complex calculation consumptions for high accuracy. In this paper, an effective range-free localization scheme is proposed for 3D space localization, and the sensitivity of parameters is evaluated. Firstly, we present an improved algorithm (MDV-Hop), that the average distance per hop of the anchor nodes is calculated by root-mean-square error (RMSE), and is dynamically corrected in groups with the weighted RMSE based on group hops. For more improvement in accuracy, we expand particle swarm optimization (PSO) of intelligent optimization algorithms to MDV-Hop localization algorithm, called PMDV-hop, in which the parameters (inertia weight and trust coefficient) in PSO are calculated dynamically. Secondly, the effect of various localization parameters affecting the PMDV-hop performance is also present. The simulation results show that PMDV-hop performs better in positioning accuracy with limited energy.

설계 민감도와 신뢰도 분석에 근거한 전자기기의 다목적 최적화 (Multi-Objective Optimization of Electromagnetic Device Based on Design Sensitivity Analysis and Reliability Analysis)

  • 렌지얀;장전해;박찬혁;고창섭
    • 전기학회논문지
    • /
    • 제62권1호
    • /
    • pp.49-56
    • /
    • 2013
  • In this paper, for constrained optimization problem, one multi-objective optimization algorithm that ensures both performance robustness and constraint feasibility is proposed when uncertainties are involved in design variables. In the proposed algorithm, the gradient index of objective function assisted by design sensitivity with the help of finite element method is applied to evaluate robustness; the reliability calculated by the sensitivity-assisted Monte Carlo simulation method is used to assess the feasibility of constraint function. As a demonstration, the performance and numerical efficiency of the proposed method is investigated through application to the optimal design of TEAM problem 22--a superconducting magnetic energy storage system.

A Many-objective Particle Swarm Optimization Algorithm Based on Multiple Criteria for Hybrid Recommendation System

  • Hu, Zhaomin;Lan, Yang;Zhang, Zhixia;Cai, Xingjuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권2호
    • /
    • pp.442-460
    • /
    • 2021
  • Nowadays, recommendation systems (RSs) are applied to all aspects of online life. In order to overcome the problem that individuals who do not meet the constraints need to be regenerated when the many-objective evolutionary algorithm (MaOEA) solves the hybrid recommendation model, this paper proposes a many-objective particle swarm optimization algorithm based on multiple criteria (MaPSO-MC). A generation-based fitness evaluation strategy with diversity enhancement (GBFE-DE) and ISDE+ are coupled to comprehensively evaluate individual performance. At the same time, according to the characteristics of the model, the regional optimization has an impact on the individual update, and a many-objective evolutionary strategy based on bacterial foraging (MaBF) is used to improve the algorithm search speed. Experimental results prove that this algorithm has excellent convergence and diversity, and can produce accurate, diverse, novel and high coverage recommendations when solving recommendation models.

Optimizations for Mobile MIMO Relay Molecular Communication via Diffusion with Network Coding

  • Cheng, Zhen;Sun, Jie;Yan, Jun;Tu, Yuchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권4호
    • /
    • pp.1373-1391
    • /
    • 2022
  • We investigate mobile multiple-input multiple-output (MIMO) molecular communication via diffusion (MCvD) system which is consisted of two source nodes, two destination nodes and one relay node in the mobile three-dimensional channel. First, the combinations of decode-and-forward (DF) relaying protocol and network coding (NC) scheme are implemented at relay node. The adaptive thresholds at relay node and destination nodes can be obtained by maximum a posteriori (MAP) probability detection method. Then the mathematical expressions of the average bit error probability (BEP) of this mobile MIMO MCvD system based on DF and NC scheme are derived. Furthermore, in order to minimize the average BEP, we establish the optimization problem with optimization variables which include the ratio of the number of emitted molecules at two source nodes and the initial position of relay node. We put forward an iterative scheme based on block coordinate descent algorithm which can be used to solve the optimization problem and get optimal values of the optimization variables simultaneously. Finally, the numerical results reveal that the proposed iterative method has good convergence behavior. The average BEP performance of this system can be improved by performing the joint optimizations.

Using Ant Colony Optimization to Find the Best Precautionary Measures Framework for Controlling COVID-19 Pandemic in Saudi Arabia

  • Alshamrani, Raghad;Alharbi, Manal H.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.352-358
    • /
    • 2022
  • In this paper, we study the relationship between infection rates of covid 19 and the precautionary measures and strict protocols taken by Saudi Arabia to combat the spread of the coronavirus disease and minimize the number of infected people. Based on the infection rates and the timetable of precautionary measures, the best framework of precautionary measures was identified by applying the traveling salesman problem (TSP) that relies on ant colony optimization (ACO) algorithms. The proposed algorithm was applied to daily infected cases data in Saudi Arabia during three periods of precautionary measures: partial curfew, whole curfew, and gatherings penalties. The results showed the partial curfew and the whole curfew for some cities have the minimum total cases over other precautionary measures. The gatherings penalties had no real effect in reducing infected cases as the other two precautionary measures. Therefore, in future similar circumstances, we recommend first applying the partial curfew and the whole curfew for some cities, and not considering the gatherings penalties as an effective precautionary measure. We also recommend re-study the application of the grouping penalty, to identify the reasons behind the lack of its effectiveness in reducing the number of infected cases.

A Multi-objective Optimization Approach to Workflow Scheduling in Clouds Considering Fault Recovery

  • Xu, Heyang;Yang, Bo;Qi, Weiwei;Ahene, Emmanuel
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.976-995
    • /
    • 2016
  • Workflow scheduling is one of the challenging problems in cloud computing, especially when service reliability is considered. To improve cloud service reliability, fault tolerance techniques such as fault recovery can be employed. Practically, fault recovery has impact on the performance of workflow scheduling. Such impact deserves detailed research. Only few research works on workflow scheduling consider fault recovery and its impact. In this paper, we investigate the problem of workflow scheduling in clouds, considering the probability that cloud resources may fail during execution. We formulate this problem as a multi-objective optimization model. The first optimization objective is to minimize the overall completion time and the second one is to minimize the overall execution cost. Based on the proposed optimization model, we develop a heuristic-based algorithm called Min-min based time and cost tradeoff (MTCT). We perform extensive simulations with four different real world scientific workflows to verify the validity of the proposed model and evaluate the performance of our algorithm. The results show that, as expected, fault recovery has significant impact on the two performance criteria, and the proposed MTCT algorithm is useful for real life workflow scheduling when both of the two optimization objectives are considered.

검색엔진 최적화를 위한 GAN 기반 웹사이트 메타데이터 자동 생성 (GAN-based Automated Generation of Web Page Metadata for Search Engine Optimization)

  • 안소정;이오준;이정현;정재은;용환성
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.79-82
    • /
    • 2019
  • 본 논문에서는 검색엔진 최적화(SEO; Search Engine Optimization)에 인공지능 기법을 접목하여, 자동화된 SEO 도구 설계 및 구현을 목표로 한다. 기존의 SEO 온-페이지(On-page) 최적화 기법들은 웹페이지 관리자들의 경험적 지식에 의존하는 한계점을 보이고 있다. 이는 SEO 성능에 영향을 끼칠 뿐 아니라, 웹페이지 관리자들에게도 SEO 도입의 장벽으로 작용한다. 따라서, 위 문제를 해결하기 위하여 메타데이터의 효과적인 구성을 위해 다음과 같은 3단계의 접근법을 제안하고자 한다. i) 상위 랭킹 웹사이트들의 메타데이터를 추출한다. ii) 어텐션 메커니즘에 기반한 LSTM(Long Short Term Memory)을 이용하여 사용자 질의어와의 관련성 높은 메타데이터를 생성한다. iii) GAN(Generative Adversarial Network) 모델을 통하여 학습함으로써 전반적으로 성능을 높여주는 기법을 제안한다. 본 연구결과는 기업의 온라인 마케팅 프로세스를 평가하고 개선하기 위한 최적화 도구로서 유용하게 활용될 것으로 기대한다.

  • PDF

전역 탐색 알고리듬을 이용한 이동 무선통신 네트워크의 최적화에 대한 연구 (A Study on Mobile Wireless Communication Network Optimization Using Global Search Algorithm)

  • 김성곤
    • 한국컴퓨터정보학회논문지
    • /
    • 제9권1호
    • /
    • pp.87-93
    • /
    • 2004
  • 이동 무선 통신 네트워크를 설계할 때 기지국(BTS), 기지국 콘트롤러(BSC), 이동 교환국(MSC)의 위치는 매우 중요한 파라미터들이다. 기지국의 위치를 설계할 때는 여러 가지 복잡한 변수들을 잘 조합하여 비용이 최소가 되도록 설계해야 한다 이러한 문제를 해결하는데 필요한 알고리듬이 전역 최적화 알고리듬이며, 지금까지 전역 최적화 검색 기술로는 Random Walk, Simulated Annealing, Tabu Search, Genetic Algorithm이 사용되어 왔다. 본 논문은 이동 통신 시스템의 기지국, 기지국 콘트롤러, 이동 교환국의 위치 최적화에 위의 4가지 알고리듬들을 적용하여 각 알고리듬의 결과를 비교 분석하며 알고리듬에 의한 최적화 과정을 보여준다.

  • PDF

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 1

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권3호
    • /
    • pp.297-316
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 2

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권3호
    • /
    • pp.317-334
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.