• Title/Summary/Keyword: Computer optimization

Search Result 2,415, Processing Time 0.034 seconds

Analysis and Optimization of Permanent Magnet Dimensions in Electrodynamic Suspension Systems

  • Hasanzadeh, Saeed;Rezaei, Hossein;Qiyassi, Ehsan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.307-314
    • /
    • 2018
  • In this paper, analytical modeling of lift and drag forces in permanent magnet electrodynamic suspension systems (PM EDSs) are presented. After studying the impacts of PM dimensions on the permanent magnetic field and developed lift force, it is indicated that there is an optimum PM length in a specified thickness for a maximum lift force. Therefore, the optimum PM length for achieving maximum lift force is obtained. Afterward, an objective design optimization is proposed to increase the lift force and to decrease the material cost of the system by using Genetic Algorithm. The results confirm that the required values of the lift force can be achieved; while, reducing the system material cost. Finite Element Analysis (FEA) and experimental tests are carried out to evaluate the effectiveness of the PM EDS system model and the proposed optimization method. Finally, a number of design guidelines are extracted.

Semidefinite Spectral Clustering (준정부호 스펙트럼의 군집화)

  • Kim, Jae-Hwan;Choi, Seung-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.892-894
    • /
    • 2005
  • Graph partitioning provides an important tool for data clustering, but is an NP-hard combinatorial optimization problem. Spectral clustering where the clustering is performed by the eigen-decomposition of an affinity matrix [1,2]. This is a popular way of solving the graph partitioning problem. On the other hand, semidefinite relaxation, is an alternative way of relaxing combinatorial optimization. issuing to a convex optimization[4]. In this paper we present a semidefinite programming (SDP) approach to graph equi-partitioning for clustering and then we use eigen-decomposition to obtain an optimal partition set. Therefore, the method is referred to as semidefinite spectral clustering (SSC). Numerical experiments with several artificial and real data sets, demonstrate the useful behavior of our SSC. compared to existing spectral clustering methods.

  • PDF

Optimization of a Gate Valve using Orthogonal Array and Kriging Model (직교배열표와 크리깅모델을 이용한 게이트밸브의 최적설계)

  • Kang Jin;Lee Jong-Mun;Kang Jung-Ho;Park Hee-Chun;Park Young-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.119-126
    • /
    • 2006
  • Kriging model is widely used as design DACE(analysis and computer experiments) model in the field of engineering design to accomplish computationally feasible design optimization. In this paper, the optimization of gate valve was performed using Kriging based approximation model. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the function. In addition, we describe the definition, the prediction function and the algorithm of Kriging method and examine the accuracy of Kriging by using validation method.

Financial Application of Integrated Optimization and Machine Learning Technique (최적화와 기계학습 결합기법의 재무응용)

  • Kim, Kyoung-jae;Park, Hoyeon;Cha, Injoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.429-430
    • /
    • 2019
  • 본 논문에서는 최적화 기법에 기반한 지능형 시스템의 재무응용사례를 다룬다. 본 연구에서 제안하는 모형은 대표적인 최적화 기법 중 하나인 시뮬레이티드 어니일링인데 이는 유전자 알고리듬과 유사한 최적화 성능을 가지고 있는 것으로 알려져 있으나 재무분야에서 응용된 사례가 거의 없다. 본 연구에서 제안하는 지능형 시스템은 시뮬레이티드 어니일링과 기계학습 기법을 결합한 것이다. 일반적으로 최적화와 기계학습 기법을 결합하는 방법은 특징선택(feature selection), 특징 가중치 최적화(feature weighting), 사례선택(instance selection), 모수 최적화(parameter optimization) 등의 방법이 있는데 선행연구에서 가장 많이 사용된 것은 특징선택에 두 기법을 결합하는 방식이다. 본 연구에서도 기계학습 기법을 재무 문제에 활용함에 있어서 최적의 특징선택을 위해 시뮬레이티드 어니일링을 결합하는 방식을 사용한다. 본 연구에서 제안된 기법의 유용성을 확인하기 위하여 실제 재무분야의 데이터를 활용하여 예측 정확도를 확인하였으며 그 결과를 통하여 제안하는 모형의 유용성을 확인할 수 있었다.

  • PDF

A Review of Deep Learning Research

  • Mu, Ruihui;Zeng, Xiaoqin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1738-1764
    • /
    • 2019
  • With the advent of big data, deep learning technology has become an important research direction in the field of machine learning, which has been widely applied in the image processing, natural language processing, speech recognition and online advertising and so on. This paper introduces deep learning techniques from various aspects, including common models of deep learning and their optimization methods, commonly used open source frameworks, existing problems and future research directions. Firstly, we introduce the applications of deep learning; Secondly, we introduce several common models of deep learning and optimization methods; Thirdly, we describe several common frameworks and platforms of deep learning; Finally, we introduce the latest acceleration technology of deep learning and highlight the future work of deep learning.

Multi-Class Classification Framework for Brain Tumor MR Image Classification by Using Deep CNN with Grid-Search Hyper Parameter Optimization Algorithm

  • Mukkapati, Naveen;Anbarasi, MS
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.101-110
    • /
    • 2022
  • Histopathological analysis of biopsy specimens is still used for diagnosis and classifying the brain tumors today. The available procedures are intrusive, time consuming, and inclined to human error. To overcome these disadvantages, need of implementing a fully automated deep learning-based model to classify brain tumor into multiple classes. The proposed CNN model with an accuracy of 92.98 % for categorizing tumors into five classes such as normal tumor, glioma tumor, meningioma tumor, pituitary tumor, and metastatic tumor. Using the grid search optimization approach, all of the critical hyper parameters of suggested CNN framework were instantly assigned. Alex Net, Inception v3, Res Net -50, VGG -16, and Google - Net are all examples of cutting-edge CNN models that are compared to the suggested CNN model. Using huge, publicly available clinical datasets, satisfactory classification results were produced. Physicians and radiologists can use the suggested CNN model to confirm their first screening for brain tumor Multi-classification.

An Intelligent Machine Learning Inspired Optimization Algorithm to Enhance Secured Data Transmission in IoT Cloud Ecosystem

  • Ankam, Sreejyothsna;Reddy, N.Sudhakar
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.83-90
    • /
    • 2022
  • Traditional Cloud Computing would be unable to safely host IoT data due to its high latency as the number of IoT sensors and physical devices accommodated on the Internet grows by the day. Because of the difficulty of processing all IoT large data on Cloud facilities, there hasn't been enough research done on automating the security of all components in the IoT-Cloud ecosystem that deal with big data and real-time jobs. It's difficult, for example, to build an automatic, secure data transfer from the IoT layer to the cloud layer, which incorporates a large number of scattered devices. Addressing this issue this article presents an intelligent algorithm that deals with enhancing security aspects in IoT cloud ecosystem using butterfly optimization algorithm.

MAPPO based Hyperparameter Optimization for CNN (MAPPO 기반 CNN 하이퍼 파라미터 최적화)

  • Ma, Zhixin;Joe, Inwhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.446-447
    • /
    • 2022
  • 대부분의 머신러닝 및 딥러닝 모델의 경우 하이퍼 파라미터 선택은 모델의 성능에 큰 영향을 미친다. 따라서 전문가들은 작업을 수행하기 위해 모델을 구축할 때 하이퍼 파라미터 튜닝을 수행하는 데 상당한 시간을 소비해야 한다. Hyperparameter Optimization(HPO)을 해결하기 위한 알고리즘은 많지만 대부분의 방법은 검색을 수행하기 위해 각 epoch에서 실제 실험 결과를 필요로 한다. 따라서 HPO 검색을 위한 시간과 계산 지원을 줄이기 위해 본 논문에서는 Multi-agent Proximal Policy Optimization(MAPPO) 강화 학습 알고리즘을 제안한다. 2개의 이미지 분류 데이터 세트에 대한 실험 결과는 우리의 모델이 속도와 정확성에서 다른 기존 방법보다 우수하다는 것을 보여준다.

Fruit Fly Optimization based EEG Channel Selection Method for BCI (BCI 시스템을 위한 Fruit Fly Optimization 알고리즘 기반 최적의 EEG 채널 선택 기법)

  • Yu, Xin-Yang;Yu, Je-Hun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.199-203
    • /
    • 2016
  • A brain-computer interface or BCI provides an alternative method for acting on the world. Brain signals can be recorded from the electrical activity along the scalp using an electrode cap. By analyzing the EEG, it is possible to determine whether a person is thinking about his/her hand or foot movement and this information can be transferred to a machine and then translated into commands. However, we do not know which information relates to motor imagery and which channel is good for extracting features. A general approach is to use all electronic channels to analyze the EEG signals, but this causes many problems, such as overfitting and problems removing noisy and artificial signals. To overcome these problems, in this paper we used a new optimization method called the Fruit Fly optimization algorithm (FOA) to select the best channels and then combine them with CSP method to extract features to improve the classification accuracy by linear discriminant analysis. We also used particle swarm optimization (PSO) and a genetic algorithm (GA) to select the optimal EEG channel and compared the performance with that of the FOA algorithm. The results show that for some subjects, the FOA algorithm is a better method for selecting the optimal EEG channel in a short time.