Park, So Young;Yoo, Eun Jin;Lee, Dong-Cheon;Lee, Yong Wook
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.30
no.6_2
/
pp.643-651
/
2012
Object recognition belongs to high-level processing that is one of the difficult and challenging tasks in computer vision. Digital photogrammetry based on the computer vision paradigm has begun to emerge in the middle of 1980s. However, the ultimate goal of digital photogrammetry - intelligent and autonomous processing of surface reconstruction - is not achieved yet. Object recognition requires a robust shape description about objects. However, most of the shape descriptors aim to apply 2D space for image data. Therefore, such descriptors have to be extended to deal with 3D data such as LiDAR(Light Detection and Ranging) data obtained from ALS(Airborne Laser Scanner) system. This paper introduces extension of chain code to 3D object space with hierarchical approach for segmenting point cloud data. The experiment demonstrates effectiveness and robustness of the proposed method for shape description and point cloud data segmentation. Geometric characteristics of various roof types are well described that will be eventually base for the object modeling. Segmentation accuracy of the simulated data was evaluated by measuring coordinates of the corners on the segmented patch boundaries. The overall RMSE(Root Mean Square Error) is equivalent to the average distance between points, i.e., GSD(Ground Sampling Distance).
In context awareness and user intention tasks, dataset construction is expensive because specific domain data are required. Although pretraining with a large corpus can effectively resolve the issue of lack of data, it ignores domain knowledge. Herein, we concentrate on data domain knowledge while addressing data scarcity and accordingly propose a multi-channel long short-term memory (LSTM). Because multi-channel LSTM integrates pretrained vectors such as task and general knowledge, it effectively prevents catastrophic forgetting between vectors of task and general knowledge to represent the context as a set of features. To evaluate the proposed model with reference to the baseline model, which is a single-channel LSTM, we performed two tasks: voice phishing with context awareness and movie review sentiment classification. The results verified that multi-channel LSTM outperforms single-channel LSTM in both tasks. We further experimented on different multi-channel LSTMs depending on the domain and data size of general knowledge in the model and confirmed that the effect of multi-channel LSTM integrating the two types of knowledge from downstream task data and raw data to overcome the lack of data.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.10
/
pp.3378-3393
/
2014
We have witnessed the rapid development of information technology in recent years. One of the key phenomena is the fast, near-exponential increase of data. Consequently, most of the traditional data classification methods fail to meet the dynamic and real-time demands of today's data processing and analyzing needs--especially for continuous data streams. This paper proposes an improved incremental learning algorithm for a large-scale data stream, which is based on SVM (Support Vector Machine) and is named DS-IILS. The DS-IILS takes the load condition of the entire system and the node performance into consideration to improve efficiency. The threshold of the distance to the optimal separating hyperplane is given in the DS-IILS algorithm. The samples of the history sample set and the incremental sample set that are within the scope of the threshold are all reserved. These reserved samples are treated as the training sample set. To design a more accurate classifier, the effects of the data volumes of the history sample set and the incremental sample set are handled by weighted processing. Finally, the algorithm is implemented in a cloud computing system and is applied to study user behaviors. The results of the experiment are provided and compared with other incremental learning algorithms. The results show that the DS-IILS can improve training efficiency and guarantee relatively high classification accuracy at the same time, which is consistent with the theoretical analysis.
하나의 유전자는 또 다른 유전자의 단백질과 프로모터 영역에서 Binding 함으로써 그 유전자의 발현에 영향을 미칠 수 있다. 이러한 두 유전자간의 조절 상호 작용을 유전자 조절망이라 하며 유전체의 핵심적인 기능을 보다 간결하게 표현하는 조절망을 설계할 수 있다. 대표적인 설계 방법으로는 Time-Series Data 를 이용한 방법과 Steady-State Data 를 이용하는 방법이 있으며 이 논문에서는 Steady-State Data 즉, Knock-out Data 를 이용하여 유전자 조절망을 재구성함으로써 기존의 방법을 개선하여 보다 정확한 결과 예측을 목표로 한다.
Spatio-temporal patterns extracted from historical trajectories of moving objects reveal important knowledge about movement behavior for high quality LBS services. Existing approaches transform trajectories into sequences of location symbols and derive frequent subsequences by applying conventional sequential pattern mining algorithms. However, spatio-temporal correlations may be lost due to the inappropriate approximations of spatial and temporal properties. In this paper, we address the problem of mining spatio-temporal patterns from trajectory data. The inefficient description of temporal information decreases the mining efficiency and the interpretability of the patterns. We provide a formal statement of efficient representation of spatio-temporal movements and propose a new approach to discover spatio-temporal patterns in trajectory data. The proposed method first finds meaningful spatio-temporal regions and extracts frequent spatio-temporal patterns based on a prefix-projection approach from the sequences of these regions. We experimentally analyze that the proposed method improves mining performance and derives more intuitive patterns.
Farooq, Muhammad Umer;Kazi, Abdul Karim;Latif, Mustafa;Alauddin, Shoaib;Kisa-e-Zehra, Kisa-e-Zehra;Baig, Mirza Adnan
International Journal of Computer Science & Network Security
/
v.22
no.11
/
pp.213-221
/
2022
Intelligent Character Recognition System for Account Payable (ICRS AP) Automation represents the process of capturing text from scanned invoices and extracting the key fields from invoices and storing the captured fields into properly structured document format. ICRS plays a very critical role in invoice data streamlining, we are interested in data like Vendor Name, Purchase Order Number, Due Date, Total Amount, Payee Name, etc. As companies attempt to cut costs and upgrade their processes, accounts payable (A/P) is an example of a paper-intensive procedure. Invoice processing is a possible candidate for digitization. Most of the companies dealing with an enormous number of invoices, these manual invoice matching procedures start to show their limitations. Receiving a paper invoice and matching it to a purchase order (PO) and general ledger (GL) code can be difficult for businesses. Lack of automation leads to more serious company issues such as accruals for financial close, excessive labor costs, and a lack of insight into corporate expenditures. The proposed system offers tighter control on their invoice processing to make a better and more appropriate decision. AP automation solutions provide tighter controls, quicker clearances, smart payments, and real-time access to transactional data, allowing financial managers to make better and wiser decisions for the bottom line of their organizations. An Intelligent Character Recognition System for AP Automation is a process of extricating fields like Vendor Name, Purchase Order Number, Due Date, Total Amount, Payee Name, etc. based on their x-axis and y-axis position coordinates.
Kim, Jong-won;Park, Yoon-bo;Ryu, Jo-mi;Shin, Ju-beom;Park, Dae-gi
Annual Conference of KIPS
/
2017.11a
/
pp.652-654
/
2017
본 프로젝트의 목적은 소상공인들을 위한 상권 분석, 트렌드 분석, 창업 지원 정책 소개, 커뮤니티 등을 제공하는 빅 데이터 기반의 웹 서비스를 구축하는 것이다. 일반적인 창업 관련 사이트는 정형데이터를 DB(Data Base)에 저장 후 관리되는 시스템으로, 이는 사용자 개개인에 맞는 맞춤형 정보를 제공하기 힘들다. 따라서 본 논문에서는 실시간 검색어 수집 및 분석을 통해 소상공인들이 창업을 희망할 때, 사용자에 맞는 정보를 제공해주는 맞춤형 서비스 연구에 대한 내용이다.
Journal of The Korean Association For Science Education
/
v.7
no.2
/
pp.37-43
/
1987
Computer in one of the most tremendous achievements of the modern scientific technique. Not only in government, business, research and education but in our daily life. computers are widely utilized to assist in solving various problems. With increasing frequency, it is recognized that a right understanding of the computer is necessary: naturally, this recognition places a great emphasis on the computer education. In Korea computer is chosen either as an optional subject or as a kind of group activity in many schools. It is the purpose of this study to compare and analyze the internal sorting algorithms which are used frequently in data processing. and to present the results of program analysis. which will make it possible to choose the appropriate sorting algorithm for each data processing. Generally the algorithms are coded in a language appropriate for structured programming. like PASCAL: however, here the algorithms are expressed in BASIC which is widely used with the personal computers so that the students and the teachers may understand them easily.
Park, Yoosang;Cho, Yongseong;Choi, Jongsun;Choi, Jaeyoung
Annual Conference of KIPS
/
2014.11a
/
pp.84-87
/
2014
상황인지는 유비쿼터스 컴퓨팅 환경에서 사용자의 주변 상황을 인지하여 사용자가 원하는 서비스를 제공하기 위해 필요한 핵심 기술이다. 이러한 상황인지를 위해 여러 센서로부터 발생하는 저수준의 컨텍스트 정보를 처리하는 다양한 방법들이 존재한다. 그러나 현재 상황인지 처리에 관련된 표준 방법이 없어 서비스 도메인에 제한되고 복잡한 구현방법을 따라야 하며, 상황정보를 처리하는 시스템에 정형화된 상황정보를 제공하는데 어려움이 있다. 이에 본 논문에서는 정형화된 상황정보를 제공하기 위한 센터 데이터 변환 방법을 제안한다. 제안하는 센서 데이터의 변환 방법은 센서로부터 발생하는 저수준의 컨텍스트를 RDF 기반의 고수준의 상황정보로 변환하며, 변환된 정보는 상황인지 시스템에 제공된다.
OAI는 간단한 프로토콜을 정의함으로써 디지털도서관 사이의 상호이용의 문제점을 해결하기 위해 제시된 프로토콜이다. OAI를 통해 디지털도서관사이의 상호이용을 가능하게 하기 위해, 디지털도서관이 가지고 있는 컨텐츠에 대한 메타데이터를 제공하기 위한 data provider와 이를 수집하여 유용한 서비스를 제공하기 위한 service provider라는 두개의 프레임웍이 필요하다. 본 논문에서는 OAI protocol을 따르는 많은 data provider들이 가지고 있는 정보들을 수집하고 수집된 정보를 통해 새로운 서비스를 제공하는 service provider의 기능을 설계 및 구현하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.