• Title/Summary/Keyword: Computer aided design and manufacturing

Search Result 407, Processing Time 0.031 seconds

Application of Virtual Surgical Planning with Computer Assisted Design and Manufacturing Technology to Cranio-Maxillofacial Surgery

  • Zhao, Linping;Patel, Pravin K.;Cohen, Mimis
    • Archives of Plastic Surgery
    • /
    • v.39 no.4
    • /
    • pp.309-316
    • /
    • 2012
  • Computer aided design and manufacturing (CAD/CAM) technology today is the standard in manufacturing industry. The application of the CAD/CAM technology, together with the emerging 3D medical images based virtual surgical planning (VSP) technology, to craniomaxillofacial reconstruction has been gaining increasing attention to reconstructive surgeons. This article illustrates the components, system and clinical management of the VSP and CAD/CAM technology including: data acquisition, virtual surgical and treatment planning, individual implant design and fabrication, and outcome assessment. It focuses primarily on the technical aspects of the VSP and CAD/CAM system to improve the predictability of the planning and outcome.

Full mouth rehabilitation utilizing computer guided implant surgery and CAD/CAM (Computer guided implant surgery와 CAD/CAM을 활용한 전악 수복 증례)

  • Kim, Sungjin;Han, Jung-Suk;Kim, Sung-Hun;Yoon, Hyung-In;Yeo, In-Sung Luke
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • Computer aided design and manufacturing and implant surgery using a guide template improve restoration-driven implant treatment procedures. This case utilized those digital technologies to make definitive prostheses for a patient. According to the work flow of digital dentistry, cone beam computed tomography established the treatment plan, which was followed to make the guide template for implant placement. The template guided the implants to be installed as planned. The customized abutments and surveyed fixed restorations were digitally designed and made. The metal framework of the removable partial denture was cast from resin pattern using an additive manufacturing technique, and the artificial resin teeth were replaced with the zirconia onlays for occlusal stability. These full mouth rehabilitation procedures provided functionally and aesthetically satisfactory results for the patient.

Implant-assisted full denture using digital guide: a case report (무치악 환자에서 디지털 가이드를 이용한 임플란트 수복증례)

  • Kim, Wook Tae
    • Journal of Technologic Dentistry
    • /
    • v.43 no.4
    • /
    • pp.202-209
    • /
    • 2021
  • By classifying temporary denture production for surgical guides, digital guide-based surgery, and final prosthesis production, the problems of each process were assessed in advance and the factors that could be improved were confirmed in this study. The manufacturing process of fusion dental prosthesis uses virtual programs and computed tomography images to manufacture devices using the latest technologies of computer-aided design/computer-aided manufacturing and three-dimensional printing, which enables implants to be placed in the desired location in advance. Moreover, implant placement is not dependent on the skill and condition of the dentist, and because it uses a computer system, it can always be performed at a constant and optimal position. This can reduce the remanufacturing rate compared with the general method, shorten the treatment period, and eliminate patient discomfort. Unlike the traditional method of using impression materials and plaster models, digital fusion dental prostheses would be evaluated as a technology for producing prosthesis through professional design technology and communication.

Computer-aided design/computer-aided manufacturing of hydroxyapatite scaffolds for bone reconstruction in jawbone atrophy: a systematic review and case report

  • Garagiola, Umberto;Grigolato, Roberto;Soldo, Rossano;Bacchini, Marco;Bassi, Gianluca;Roncucci, Rachele;De Nardi, Sandro
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.2.1-2.9
    • /
    • 2016
  • Background: We reviewed the biological and mechanical properties of porous hydroxyapatite (HA) compared to other synthetic materials. Computer-aided design/computer-aided manufacturing (CAD/CAM) was also evaluated to estimate its efficacy with clinical and radiological assessments. Method: A systematic search of the electronic literature database of the National Library of Medicine (PubMed-MEDLINE) was performed for articles published in English between January 1985 and September 2013. The inclusion criteria were (1) histological evaluation of the biocompatibility and osteoconductivity of porous HA in vivo and in vitro, (2) evaluation of the mechanical properties of HA in relation to its porosity, (3) comparison of the biological and mechanical properties between several biomaterials, and (4) clinical and radiological evaluation of the precision of CAD/CAM techniques. Results: HA had excellent osteoconductivity and biocompatibility in vitro and in vivo compared to other biomaterials. HA grafts are suitable for milling and finishing, depending on the design. In computed tomography, porous HA is a more resorbable and more osteoconductive material than dense HA; however, its strength decreases exponentially with an increase in porosity. Conclusions: Mechanical tests showed that HA scaffolds with pore diameters ranging from 400 to $1200{\mu}m$ had compressive moduli and strength within the range of the human craniofacial trabecular bone. In conclusion, using CAD/CAM techniques for preparing HA scaffolds may increase graft stability and reduce surgical operating time.

Fabrication of a custom polyetherketoneketone post-and-core with digital technology

  • Ju-Hyoung Lee;Gyu-Heon Lee
    • Journal of Technologic Dentistry
    • /
    • v.46 no.1
    • /
    • pp.15-19
    • /
    • 2024
  • An ideal post material should have physical properties similar to those of dentin. Post materials with high elastic moduli may cause root fractures. This clinical report describes the treatment of a severely damaged tooth using a recently introduced material. Polyetherketoneketone (PEKK) is a semicrystalline high-performance thermoplastic polymer. PEKK is a promising material for custom post-and-core fabrication because of its elasticity close to that of dentin, good shock absorbance, machinability, and low cost. A laboratory scanner was used to digitize the conventional impression of a severely damaged maxillary right first molar. A custom PEKK post-and-core was designed and milled using computer-aided design and computer-aided manufacturing technology. Using the proposed technique, a custom PEKK post-and-core was fabricated accurately and human error was reduced. Restoration was luted with resin cement. Custom PEKK post-and-core restorations are a viable alternative for treating severely damaged teeth.

Single-tooth dento-osseous osteotomy with a computer-aided design/computer-aided manufacturing surgical guide

  • Kang, Sang-Hoon;Kim, Moon-Key;Lee, Ji-Yeon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.42 no.2
    • /
    • pp.127-130
    • /
    • 2016
  • This clinical note introduces a method to assist surgeons in performing single-tooth dento-osseous osteotomy. For use in this method, a surgical guide was manufactured using computer-aided design/computer-aided manufacturing technology and was based on preoperative surgical simulation data. This method was highly conducive to successful single-tooth dento-osseous segmental osteotomy.

RPD framework fabrication using computer-aided design (CAD) and rapid prototyping (Computer-aided design (CAD) 및 쾌속조형술을 이용한 가철성 국소의치 수복 증례)

  • Park, Seon-Ah;Koak, Jai-Young;Heo, Seong-Joo;Kim, Seong-Kyun;Park, Ji-Man
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.1
    • /
    • pp.94-99
    • /
    • 2017
  • Nowadays, digital dentistry is generally applied to prosthodontics with fabrication of inlays or any other fixed prostheses by utilizing CAD/CAM (computer-aided design/computer-aided manufacturing) technology and intraoral scanner. However, in fabricating removable prosthesis, there are some limitations for digital technology to substitute conventional casting method. Therefore, approaching removable prostheses fabrication with CAD/CAM technology would be a meaningful trial. In this case report, Kennedy class III mandibular edentulous patient who was in need of increasing the vertical dimension of occlusion was treated with removable partial denture using CAD and rapid prototyping technique. Surveying and designing the metal framework of the partial denture was performed with CAD, and sacrificial plastic pattern was fabricated with rapid prototyping technique. During the follow up period of nine months, the removable partial denture has provided satisfactory results in esthetics and function.

Fabrication of additive manufacturing interim denture and comparison with conventional interim denture: A case report (적층가공을 이용한 임시의치 제작 및 기존방식의 임시의치와의 비교 증례)

  • Kim, Hyun-Ah;Lim, Hyun-Pil;Kang, Hyeon;Yang, Hongso;Park, Sang-Won;Yun, Kwi-Dug
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.483-489
    • /
    • 2019
  • With development of digital dentistry, the 3-dimensional (3D) manufacturing industry using computer-aided design and computer-aided manufacturing (CAD/CAM) has grown dramatically in recent years. Denture fabrication using digital method is also increasing due to the recent development of digital technology in dentistry. The 3D manufacturing process can be categorized into 2 types: subtractive manufacturing (SM) and additive manufacturing (AM). SM, such as milling is based on cutting away from a solid block of materal. AM, such as 3D printing, is based on adding the material layer by layer. AM enables the fabrication of complex structures that are difficult to mill. In this case, additive manufacturing method was applied to the fabrication of the resin-based complete denture to a 80 year-old patient. During the follow-up periods, the denture using digital method has provided satisfactory results esthetically and functionally.

Genioplasty using a simple CAD/CAM (computer-aided design and computer-aided manufacturing) surgical guide

  • Lim, Se-Ho;Kim, Moon-Key;Kang, Sang-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.44.1-44.6
    • /
    • 2015
  • Background: The present study introduces the design and fabrication of a simple surgical guide with which to perform genioplasty. Methods: A three-dimensional reconstruction of the patient's cranio-maxilla region was built, with a dentofacial skeletal model, then derived from CT DICOM data. A surgical simulation was performed on the maxilla and mandible, using three-dimensional cephalometry. We then simulated a full genioplasty, in silico, using the three-dimensional (3D) model of the mandible, according to the final surgical treatment plan. The simulation allowed us to design a surgical guide for genioplasty, which was then computer-rendered and 3D-printed. The manufactured surgical device was ultimately used in an actual genioplasty to guide the osteotomy and to move the cut bone segment to the intended location. Results: We successfully performed the osteotomy, as planned during a genioplasty, using the computer-aided design and computer-aided manufacturing (CAD/CAM) surgical guide that we initially designed and tested using simulated surgery. Conclusions: The surgical guide that we developed proved to be a simple and practical tool with which to assist the surgeon in accurately cutting and removing bone segments, during a genioplasty surgery, as preoperatively planned during 3D surgical simulations.

Die Manufacturing and Repair Using Laser-Aided Direct Metal Manufacturing (레이저 직접금속조형(DMM)기술에 의한 금형제작 및 보수)

  • 지해성;서정훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.104-107
    • /
    • 2002
  • Direct Metal Manufacturing (DMM) is a new additive process that aims to take die making and metalworking in an entirely new direction. It is the blending of five common technologies : lasers, computer-aided design (CAD), computer-aided manufacturing (CAM), sensors and powder metallurgy. The resulting process creates parts by focusing an industrial laser beam onto a tool-steel work piece or platform to create a molten pool of metal. A small stream of powdered tool-steel metal is then injected into the melt pool to increase the size of the molten pool. By moving the laser beam back and forth, under CNC control, and tracing out a pattern determined by a computerized CAD design, the solid metal part is built line-by-line, one layer at a time. DMM produces improved material properties in less time and at a lower cast than is possible with traditional fabrication.

  • PDF