• Title/Summary/Keyword: Computer aided design and manufacturing

Search Result 407, Processing Time 0.022 seconds

Application of CAD-CAM technology to surgery-first orthognathic approach (디지털 기술을 이용한 선수술 악교정치료)

  • Kim, Yoon-Ji;Gil, Byung-Gyu;Ryu, Jae-Jun
    • The Journal of the Korean dental association
    • /
    • v.56 no.11
    • /
    • pp.622-630
    • /
    • 2018
  • For successful surgery-first approach, accurate prediction of skeletal and dental changes following orthognathic surgery is essential. With recent development of digital technology using computer-aided design/computer-aided manufacturing (CAD/CAM) technology, attempts to provide more predictable orthodontic/orthognathic treatment have been made through 3D virtual surgery and digital tooth setup. A clinical protocol for the surgery-first orthognathic approach using virtual surgery is proposed. A case of skeletal Class III patient with facial asymmetry treated by the surgery-first approach using digital setup and virtual surgery is presented. Advantages and limitations of applying CAD/CAM technology to orthognathic surgery are discussed.

  • PDF

3D printed surveyed restoration and metal framework in removable dentures: A case report (3D 프린팅 된 서베이드 금관과 금속 프레임워크를 이용한 양악 가철성 의치 수복 증례)

  • Song Yi Park;Sang-Won Park;Chan Park;Woohyung Jang;Kwi-Dug Yun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.2
    • /
    • pp.153-159
    • /
    • 2023
  • Computer-aided design-computer-aided manufacturing technology has been widely used in the manufacture of fixed prostheses including implants, but in the case of removable dentures, the analog method is still being used due to the errors such as a lack of fusion and over-fusion in selective laser meting process. With the recent development of CAD software, virtual surveying and framework design are made possible, and the designed file can be manufactured by milling or 3D printing. It replace the analog method of waxing and denture curing process and also can reduce the production time and cost. Therefore, this case is reported because good clinical results were obtained by digitally surveying on CAD software to produce a surveyed metal restoration and framework on maxillary and mandibular removable dentures.

Sinus floor elevation and implant-supported fixed dental prosthesis in the posterior area, with full-digital system: a case report (완전 디지털 시스템을 이용한 상악동 거상술 및 구치부 임플란트 고정성 보철 수복 증례)

  • Gang Soo Park;Sunjai Kim;Se-Wook Pyo;Jae-Seung Chang
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.62 no.2
    • /
    • pp.157-164
    • /
    • 2024
  • A variety of digital technologies are being used throughout the entire implant treatment process of diagnosis, surgery, impression, design, and fabrication of prostheses. In this case, using a digital surgical guide, sinus floor elevation was performed without complications, and the implants were placed in the planned position. After the healing period for osseointegration, CAD-CAM (Computer-aided design-Computer-aided manufacturing) customized abutments and provisional prostheses were delivered. While using the provisional prosthesis, occlusal change was observed. To transfer the intermaxillary relationship and abutment position that reflect occlusal change and axial displacement, double scanning and abutment-level digital impressions were taken. Abutment superimposition was used to capture the subgingival margin without gingival retraction. Then, the definitive prosthesis was designed and fabricated with digital system. We report a case applying digital system, to achieve the predictable result as well as the efficient treatment process from implant surgery to fabricating prosthesis in the posterior area.

Development of Precision Inspection Technique for Aircraft Parts Having Very Thin Features on CAD/CAI Integration (CAD/CAI 통합에 기초한 박형 단면을 가지는 항공기 터빈블레이드의 정밀측정기술 개발)

  • Park, Hui-Jae;An, U-Jeong;Kim, Wang-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1743-1752
    • /
    • 1996
  • In this paper, a precision inspection technique using CAD/CAI integration is proposed for the parts having very thin and sharp 3 dimensional curve features. The technique begings with feature reconstruction of turbine blades which have 3 dimensional combined feometry, such as splines, and thin circles. The alifnment procedures consistsb of two phases-rough and fine phases : rough phase alignment is based on the conventional 6 point5s probing on the clear cut surfacef, and fine phase alignment is based on the intial measurement on the 3 dimensional curved parts using an lterative measurement feed-back least sequares technique for alignment. Forf the analysis of profile tolerance of parts, the actual measured points are obtained by finding the closet points on the CAD geometry by the developed subdivision technique and the Tschebycheff norm is applied based on iterative fashion, giving accurate profile tolerance value. The developed inspection technique is applied to practical procedures of blade manufacturing and demonstrated high performance.

Design Technique for Track Shoe Body of Military Vehicles (군용 궤도류 궤도몸체 설계 방법론 연구)

  • Shin, Cheolho;Oh, Yeong Min;Park, Ji Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.77-82
    • /
    • 2018
  • Track shoes improve the off-road driving ability of tanks. The strength of the track shoe body directly affects the driving ability of tanks, self-propelled artillery, and armored vehicles. In this study, the design technique for track shoe body was investigated. To select the optimal design of track shoe body, three track shoe body models were suggested and compared. Tensile strength was calculated using computer-aided engineering (CAE) analysis. Compressive tests were conducted using the original tank sprocket because sprocket compression is critical to the lifespan of the track shoe body. As a result, one track shoe body design was selected and the process of track shoe body design was described.

New CAD Datarization Technique of Shoe Lasts for Automation of the Adaptive Lasting Machine (적응형 라스팅기의 자동화를 위한 제화용 라스트의 새로운 CAD Data화 기법)

  • Kim, S.H.;Jang, K.K.;Kim, K.P.;Huh, H.;Kwon, D.S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.1
    • /
    • pp.17-23
    • /
    • 2001
  • Lasting machines for shoe manufacturing are continuously developed with the aid of automation and CAM(Computer Aided Manufacturing). Although automation and CAM techniques have tremendously reduced the labor in shoe manufacturing, there still remain some parts manufactured by experts. In order to enhance the capability and efficiency of machines for labor-free shoe manufacturing, CAD data of a shoe last is essential. While CAD datarization takes the fundamental role in the shoe design and manufacturing, there has been little research for the CAD datarization of a shoe last. In this paper, a new procedure for CAD datarization of a shoe last using finite element patches and a tension sl)line method is proposed for application to shoe manufacturing machines. The outer line of a shoe-last sole is interpolated by a tension spline method and bonding lines are extracted from the shoe CAD data. Data set for a control algorithm of the tasting machine can be produced from the CAD data.

  • PDF

Evaluation of marginal discrepancy in metal frameworks fabricated by sintering-based computer-aided manufacturing methods

  • Kaleli, Necati;Ural, Cagri;Us, Yesim Olcer
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.124-130
    • /
    • 2020
  • PURPOSE. The aim of this in vitro study was to evaluate the effect of sintering procedures on marginal discrepancies of fixed partial metal frameworks fabricated using different sintering-based computer-aided design and computer/aided manufacturing (CAD/CAM) techniques. MATERIALS AND METHODS. Forty resin die models of prepared premolar and molar abutment teeth were fabricated using a three-dimensional (3D) printer and divided into four groups (n = 10) according to the fabrication method of metal frameworks used: HM (via hard milling), SM (via soft metal milling), L25 (via direct metal laser melting [DMLM] with a 25 ㎛ layer thickness), and L50 (via direct DMLM with a 50 ㎛ layer thickness). After the metal frameworks were fabricated and cemented, five vertical marginal discrepancy measurements were recorded in each site (i.e., buccal, facing the pontic, lingual, and facing away from the pontic) of both abutment teeth under a stereomicroscope (×40). Data were statistically analyzed at a significance level of 0.05. RESULTS. No statistically significant differences (P>.05) were found among the four axial sites of metal frameworks fabricated by sintering-based CAD/CAM techniques. The HM and L25 groups showed significantly (P<.001) lower marginal discrepancy values than the SM and L50 groups. CONCLUSION. Marginal discrepancy in the sites facing the pontic was not influenced by the type of sintering procedure. All fabrication methods exhibited clinically acceptable results in terms of marginal discrepancies.

Surface deterioration of monolithic CAD/CAM restorative materials after artificial abrasive toothbrushing

  • Sen, Nazmiye;Tuncelli, Betul;Guller, Gultekin
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.271-278
    • /
    • 2018
  • PURPOSE. The purpose of this in vitro study was to evaluate the effect of abrasive toothbrushing on the surface properties of monolithic computer-assisted design and computer-assisted manufacturing (CAD/CAM) materials stored in food-simulating liquids (FSLs). MATERIALS AND METHODS. Fourty-eight disk-shaped test specimens of each material (Paradigm MZ100/PMZ, Lava Ultimate/LU, Vita Enamic/VE, and Vita Mark II/VMII) with a diameter of 10.0 mm and a thickness of $3.0{\pm}0.05mm$ were prepared. Specimens were divided into 4 subgroups (n=12) and stored in air, distilled water, 0.02 M citric acid, or 75% ethanol/water solution for 7 days at $36.5^{\circ}C$. Then, the specimens were brushed in a multi-station brushing machine under a vertical load of 2.0 N for 3 hours. Surface gloss (GU), roughness (Ra), and hardness (Vickers [VHN]) were measured after storage and brushing simulation. The data sets were statistically analyzed with 2 and 3-way ANOVAs followed by the Tukey's post-hoc comparisons (${\alpha}=.05$). RESULTS. Statistically significant difference was found among the materials concerning the results of surface properties. VMII showed the highest VHN, while PMZ produced the lowest. Storage in FSLs significantly affected the VHN of PMZ and LU. VMII showed the lowest Ra and highest GU irrespective of FSLs and of abrasive toothbrushing. VE, LU, and PMZ produced significant decrease in GU and increase in Ra after toothbrushing. CONCLUSION. Surface properties of monolithic CAD/CAM restorative materials were differently affected by the storage media and abrasive toothbrushing.

A study on the relationship between the mathematical learning status and basic mathematical ability of K university freshmen: for nursing, dental health, computer, and engineering departments (K 대학 신입생의 수학학습 실태와 기본 수리 능력과의 관계: 간호·치과보건계열과 컴퓨터·공학계열을 대상으로)

  • Soon-Suk Kwon;Tae-Hee Lee
    • Journal of Technologic Dentistry
    • /
    • v.45 no.1
    • /
    • pp.21-29
    • /
    • 2023
  • Purpose: This study attempted to collect basic data to improve the basic repair ability of university freshmen in a world where the usage of advanced medical devices related to computer programs is now common. Methods: The collected data from 280 university freshmen enrolled in nursing, dental, and health degrees or computer and engineering degrees at K university of Gangwon-do were analyzed using the t-test, ANOVA, correlation analysis, and linear regression analysis using the IBM SPSS Statistics ver. 21.0 (IBM). Results: The mathematical learning status and the detailed factors of basic mathematical ability had a positive (+) correlation. The factors of basic mathematical ability, psychology of learning (p<0.001), method of learning (p<0.001), and propensity to learn (p<0.05) were found to be statistically significant, and the model's explanatory power was 40.0%. Conclusion: As a result of this study and considering that advanced medical devices such as computer-aided design/computer-aided manufacturing and three-dimensional printers are becoming more common and up-to-date in clinical settings, it is determined that nursing and dental health students require education to improve their repair skills.

Geometric Modeling and Five-axis Machining of Tire Master Models

  • Lee, Cheol-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.75-78
    • /
    • 2008
  • Tire molds are manufactured by aluminum casting, direct five-axis machining, and electric discharging machining. Master models made of chemical wood are necessary if aluminum casting is used. They are designed with a three-dimensional computer-aided design system and milled by a five-axis machine. In this paper, a method for generating and machining a tire surface model is proposed and demonstrated. The groove surfaces, which are the main feature of the tire model, are created using a parametric design concept. An automatically programmed tool-like descriptive language is presented to implement the parametric design. Various groove geometries can be created by changing variables. For convenience, groove surfaces and raw cutter location (CL) data are generated in two-dimensional drawing space. The CL data are mapped to the tread surface to obtain five-axis CL data to machine the master model. The proposed method was tested by actual milling using the five-axis control machine. The results demonstrate that the method is useful for manufacturing a tire mold.