• Title/Summary/Keyword: Computer Vision system

Search Result 1,064, Processing Time 0.025 seconds

Estimation of Miniature Train Location by Color Vision for Development of an Intelligent Railway System (지능형 철도 시스템 모델 개발을 위한 컬러비전 기반의 소형 기차 위치 측정)

  • 노광현;한민홍
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • This paper describes a method of estimating miniature train location by color vision for development of an intelligent railway system model. In the teal world, to control trains automatically, GPS(Global Positioning System) is indispensable to determine the location of trains. A color vision system was used for estimating the location of trains in an indoor experiment. Two different rectangular color bars were attached to the top of each train as a means of identifying them. Several trains were detected where they were located on the track by color feature, geometric features and moment invariant, and tracked simultaneously. In the experiment the identity, location and direction of each train were estimated and transferred to the control computer using serial communication. Processing speed of up to 8 frames/sec could be achieved, which was enough speed for the real-time train control.

Autonomous-flight Drone Algorithm use Computer vision and GPS (컴퓨터 비전과 GPS를 이용한 드론 자율 비행 알고리즘)

  • Kim, Junghwan;Kim, Shik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.3
    • /
    • pp.193-200
    • /
    • 2016
  • This paper introduces an algorithm to middle-low price drone's autonomous navigation flight system using computer vision and GPS. Existing drone operative system mainly contains using methods such as, by inputting course of the path to the installed software of the particular drone in advance of the flight or following the signal that is transmitted from the controller. However, this paper introduces new algorithm that allows autonomous navigation flight system to locate specific place, specific shape of the place and specific space in an area that the user wishes to discover. Technology developed for military industry purpose was implemented on a lower-quality hobby drones without changing its hardware, and used this paper's algorithm to maximize the performance. Camera mounted on middle-low price drone will process the image which meets user's needs will look through and search for specific area of interest when the user inputs certain image of places it wishes to find. By using this algorithm, middle-low price drone's autonomous navigation flight system expect to be apply to a variety of industries.

TELE-OPERATIVE SYSTEM FOR BIOPRODUCTION - REMOTE LOCAL IMAGE PROCESSING FOR OBJECT IDENTIFICATION -

  • Kim, S. C.;H. Hwang;J. E. Son;Park, D. Y.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.300-306
    • /
    • 2000
  • This paper introduces a new concept of automation for bio-production with tele-operative system. The proposed system showed practical and feasible way of automation for the volatile bio-production process. Based on the proposition, recognition of the job environment with object identification was performed using computer vision system. A man-machine interactive hybrid decision-making, which utilized a concept of tele-operation was proposed to overcome limitations of the capability of computer in image processing and feature extraction from the complex environment image. Identifying watermelons from the outdoor scene of the cultivation field was selected to realize the proposed concept. Identifying watermelon from the camera image of the outdoor cultivation field is very difficult because of the ambiguity among stems, leaves, shades, and especially fruits covered partly by leaves or stems. The analog signal of the outdoor image was captured and transmitted wireless to the host computer by R.F module. The localized window was formed from the outdoor image by pointing to the touch screen. And then a sequence of algorithms to identify the location and size of the watermelon was performed with the local window image. The effect of the light reflectance of fruits, stems, ground, and leaves were also investigated.

  • PDF

Event recognition of entering and exiting (출입 이벤트 인식)

  • Cui, Yaohuan;Lee, Chang-Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2008.06a
    • /
    • pp.199-204
    • /
    • 2008
  • Visual surveillance is an active topic recently in Computer Vision. Event detection and recognition is one important and useful application of visual surveillance system. In this paper, we propose a new method to recognize the entering and exiting events based on the human's movement feature and the door's state. Without sensors, the proposed approach is based on novel and simple vision method as a combination of edge detection, motion history image and geometrical characteristic of the human shape. The proposed method includes several applications such as access control in visual surveillance and computer vision fields.

  • PDF

Computer Vision-based Method to Detect Fire Using Color Variation in Temporal Domain

  • Hwang, Ung;Jeong, Jechang;Kim, Jiyeon;Cho, JunSang;Kim, SungHwan
    • Quantitative Bio-Science
    • /
    • v.37 no.2
    • /
    • pp.81-89
    • /
    • 2018
  • It is commonplace that high false detection rates interfere with immediate vision-based fire monitoring system. To circumvent this challenge, we propose a fire detection algorithm that can accommodate color variations of RGB in temporal domain, aiming at reducing false detection rates. Despite interrupting images (e.g., background noise and sudden intervention), the proposed method is proved robust in capturing distinguishable features of fire in temporal domain. In numerical studies, we carried out extensive real data experiments related to fire detection using 24 video sequences, implicating that the propose algorithm is found outstanding as an effective decision rule for fire detection (e.g., false detection rate <10%).

Vision-based Input-Output System identification for pedestrian suspension bridges

  • Lim, Jeonghyeok;Yoon, Hyungchul
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.715-728
    • /
    • 2022
  • Recently, numbers of long span pedestrian suspension bridges have been constructed worldwide. While recent tragedies regarding pedestrian suspension bridges have shown how these bridges can wreak havoc on the society, there are no specific guidelines for construction standards nor safety inspections yet. Therefore, a structural health monitoring system that could help ensure the safety of pedestrian suspension bridges are needed. System identification is one of the popular applications for structural health monitoring method, which estimates the dynamic system. Most of the system identification methods for bridges are currently adapting output-only system identification method, which assumes the dynamic load to be a white noise due to the difficulty of measuring the dynamic load. In the case of pedestrian suspension bridges, the pedestrian load is within specific frequency range, resulting in large errors when using the output-only system identification method. Therefore, this study aims to develop a system identification method for pedestrian suspension bridges considering both input and output of the dynamic system. This study estimates the location and the magnitude of the pedestrian load, as well as the dynamic response of the pedestrian bridges by utilizing artificial intelligence and computer vision techniques. A simulation-based validation test was conducted to verify the performance of the proposed system. The proposed method is expected to improve the accuracy and the efficiency of the current inspection and monitoring systems for pedestrian suspension bridges.

Human Action Recognition Using Pyramid Histograms of Oriented Gradients and Collaborative Multi-task Learning

  • Gao, Zan;Zhang, Hua;Liu, An-An;Xue, Yan-Bing;Xu, Guang-Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.483-503
    • /
    • 2014
  • In this paper, human action recognition using pyramid histograms of oriented gradients and collaborative multi-task learning is proposed. First, we accumulate global activities and construct motion history image (MHI) for both RGB and depth channels respectively to encode the dynamics of one action in different modalities, and then different action descriptors are extracted from depth and RGB MHI to represent global textual and structural characteristics of these actions. Specially, average value in hierarchical block, GIST and pyramid histograms of oriented gradients descriptors are employed to represent human motion. To demonstrate the superiority of the proposed method, we evaluate them by KNN, SVM with linear and RBF kernels, SRC and CRC models on DHA dataset, the well-known dataset for human action recognition. Large scale experimental results show our descriptors are robust, stable and efficient, and outperform the state-of-the-art methods. In addition, we investigate the performance of our descriptors further by combining these descriptors on DHA dataset, and observe that the performances of combined descriptors are much better than just using only sole descriptor. With multimodal features, we also propose a collaborative multi-task learning method for model learning and inference based on transfer learning theory. The main contributions lie in four aspects: 1) the proposed encoding the scheme can filter the stationary part of human body and reduce noise interference; 2) different kind of features and models are assessed, and the neighbor gradients information and pyramid layers are very helpful for representing these actions; 3) The proposed model can fuse the features from different modalities regardless of the sensor types, the ranges of the value, and the dimensions of different features; 4) The latent common knowledge among different modalities can be discovered by transfer learning to boost the performance.

Development of the Sorting Inspection System for Screw/Bolt Using a Slant Method (슬랜트방식을 이용한 스크류/볼트 선별검사시스템 개발)

  • Kim, Yong-Seok;Yang, Soon-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.698-704
    • /
    • 2010
  • The machine vision system has been widely applied at automatic inspection field of the industries. Especially, the machine vision system shows good performance at difficult inspection field by contact method. In this paper, the automatic system of a slant method to inspect screw/bolt shape using machine vision is developed. The inspection system uses pattern matching method that search similar degree of the lucidity, the average lucidity, length and angle of inspection set up area using a circular scan and a line scan method. Also the feeding method for inspection product is the slant method, and feed rate is controlled by the ramp angle adjustment. This inspection system is composed of a feeding device, a transfer device, vision systems, a lighting device and computer, and is composed the sorting discharge system of the inferior product. The performance test carried out the feeding speed, the shape correct degree and the sorting discharge speed according to the type of screw/bolt. This sorting inspection system showed a satisfied test results in whole inspection items. Presently, this sorting inspection system is being used in the manufacturing process of screw/bolt usefully.

Computer Interface Using Head-Gaze Tracking (응시 위치 추적 기술을 이용한 인터페이스 시스템 개발)

  • 이정준;박강령;김재희
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.516-519
    • /
    • 1999
  • Gaze detection is to find out the position on a monitor screen where a user is looking at, using the image processing and computer vision technology, We developed a computer interface system using the gaze detection technology, This system enables a user to control the computer system without using their hands. So this system will help the handicapped to use a computer and is also useful for the man whose hands are busy doing another job, especially in tasks in factory. For the practical use, command signal like mouse clicking is necessary and we used eye winking to give this command signal to the system.

  • PDF

Image Superimposition for the Individual Identification Using Computer Vision System (컴퓨터 시각 인식 기법을 이용한 영상 중첩법에 의한 개인식별)

  • Ha-Jin Kim
    • Journal of Oral Medicine and Pain
    • /
    • v.21 no.1
    • /
    • pp.37-54
    • /
    • 1996
  • In this thesis, a new superimposition scheme using a computer vision system was proposed with 7 pairs of skull and ante-mortem photographs, which were already identified through other tests and DNA fingerprints at the Korea National Institute of Scientific Investigation. At this computer vision system, an unidentified skull was caught by video-camcoder with the MPEG and a ante-mortem photograph was scanned by scanner. These two images were processed and superimposed using pixel processing. Recognition of the individual identification by anatomical references was performed on the two superimposed images. These results were as followings. 1. For the enhancement of skull and ante-mortem photographs, various image processing schemes, such as SMOOTH, SHARPEN, EMBOSS, MOSAIC, ENGRAVE, INVERT, NEON and COLOR TO MONO, were applied using 3*5 window processing. As an image processing result of these methods, the optimal techniques were NEON, INVERT and ENGRAVE for the edge detection of skull and ante-mortem photograph. 2. Using various superimposition image processing techniques (SRCOR, SRCAND, SRCINVERT, SRCERASE, DSTINVERT, MERGEPAINT) were compared for the enhancement of image recognition. 3. By means of the video camera, the skull image was inputed directly to a computer system : superimposing it on the ante-mortem photograph made the identification more precise and time-saving. As mentioned above, this image processing techniques for the superimposition of skull and ante-mortem photographs simply used the previous approach, In other wrods, taking skull photographs and developing it to the same size as the ante-mortem photographs. This system using various image processing techniques on computer screen, a more precise and time-saving superimposition technique could be able to be applied in the area of individual identification in forensic practice.

  • PDF