• 제목/요약/키워드: Computer Vision Technology

검색결과 685건 처리시간 0.025초

Classifying Indian Medicinal Leaf Species Using LCFN-BRNN Model

  • Kiruba, Raji I;Thyagharajan, K.K;Vignesh, T;Kalaiarasi, G
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3708-3728
    • /
    • 2021
  • Indian herbal plants are used in agriculture and in the food, cosmetics, and pharmaceutical industries. Laboratory-based tests are routinely used to identify and classify similar herb species by analyzing their internal cell structures. In this paper, we have applied computer vision techniques to do the same. The original leaf image was preprocessed using the Chan-Vese active contour segmentation algorithm to efface the background from the image by setting the contraction bias as (v) -1 and smoothing factor (µ) as 0.5, and bringing the initial contour close to the image boundary. Thereafter the segmented grayscale image was fed to a leaky capacitance fired neuron model (LCFN), which differentiates between similar herbs by combining different groups of pixels in the leaf image. The LFCN's decay constant (f), decay constant (g) and threshold (h) parameters were empirically assigned as 0.7, 0.6 and h=18 to generate the 1D feature vector. The LCFN time sequence identified the internal leaf structure at different iterations. Our proposed framework was tested against newly collected herbal species of natural images, geometrically variant images in terms of size, orientation and position. The 1D sequence and shape features of aloe, betel, Indian borage, bittergourd, grape, insulin herb, guava, mango, nilavembu, nithiyakalyani, sweet basil and pomegranate were fed into the 5-fold Bayesian regularization neural network (BRNN), K-nearest neighbors (KNN), support vector machine (SVM), and ensemble classifier to obtain the highest classification accuracy of 91.19%.

A Lightweight Pedestrian Intrusion Detection and Warning Method for Intelligent Traffic Security

  • Yan, Xinyun;He, Zhengran;Huang, Youxiang;Xu, Xiaohu;Wang, Jie;Zhou, Xiaofeng;Wang, Chishe;Lu, Zhiyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권12호
    • /
    • pp.3904-3922
    • /
    • 2022
  • As a research hotspot, pedestrian detection has a wide range of applications in the field of computer vision in recent years. However, current pedestrian detection methods have problems such as insufficient detection accuracy and large models that are not suitable for large-scale deployment. In view of these problems mentioned above, a lightweight pedestrian detection and early warning method using a new model called you only look once (Yolov5) is proposed in this paper, which utilizing advantages of Yolov5s model to achieve accurate and fast pedestrian recognition. In addition, this paper also optimizes the loss function of the batch normalization (BN) layer. After sparsification, pruning and fine-tuning, got a lot of optimization, the size of the model on the edge of the computing power is lower equipment can be deployed. Finally, from the experimental data presented in this paper, under the training of the road pedestrian dataset that we collected and processed independently, the Yolov5s model has certain advantages in terms of precision and other indicators compared with traditional single shot multiBox detector (SSD) model and fast region-convolutional neural network (Fast R-CNN) model. After pruning and lightweight, the size of training model is greatly reduced without a significant reduction in accuracy, and the final precision reaches 87%, while the model size is reduced to 7,723 KB.

비전 기반 측위 보조 알고리즘의 성능 분석 (Performance Analysis of Vision-based Positioning Assistance Algorithm)

  • 박종수;이용;권재현
    • 한국측량학회지
    • /
    • 제37권3호
    • /
    • pp.101-108
    • /
    • 2019
  • 최근 컴퓨터 처리 속도의 향상과 영상 처리 기술의 발달로 인해 카메라에서 획득하는 정보를 기존의 GNSS(Global Navigation Satellite System), 추측 항법 기반의 측위 기술과 결합하여 안정적인 위치를 결정하기 위한 연구가 활발히 진행 중이다. 기존 연구에서는 단안 카메라를 이용한 연구가 주로 수행되었으나 이 경우 관심 객체의 절대좌표가 구축이 되어 있어야 한다는 한계점이 있다. 이러한 한계를 극복하기 위해 본 연구에서는 스테레오 영상으로부터 삼각측량법을 적용하여 카메라와 관심 객체간 거리를 추정하는 비전 기반 측위 보조 알고리즘을 개발하고 성능 분석을 수행하였다. 또한, 추정된 거리와 카메라 영상 획득 간격을 이용해 상대적인 속도를 계산하고 이를 기존에 개발된 GNSS/이동체 내부 센서 기반 측위 알고리즘과 결합하여 통합 측위 알고리즘을 구현하였다. 실제 주행 자료를 기반으로 통합측위 알고리즘에 대한 성능을 분석한 결과 기존에 개발된 GNSS/이동체 내부 센서 기반 측위 알고리즘에 비해 속도 정보를 항법해 보정에 활용하였을 때 약 4%의 미미한 위치 정확도 향상 효과를 확인하였다. 이는 영상으로부터 추정된 속도 정보의 정밀도가 낮고, 터널 등을 지날 때는 영상으로부터 적절한 정보를 추출할 수 없다는 한계가 있어 이를 보완한 추가 연구가 필요하다고 판단된다.

안구의 운동방향이 다른 컴퓨터 게임 후 폭주근점과 융합여력의 변화 (The Change of Near Point of Convergence and Fusional Reserves after Computer Gaming with Different Direction of Eye Movement)

  • 김세일;권기일;이지예;이효진;박미정;김소라
    • 한국안광학회지
    • /
    • 제18권1호
    • /
    • pp.37-43
    • /
    • 2013
  • 목적: 본 연구에서는 안구의 운동방향이 다른 컴퓨터 게임을 일정시간 동안 수행하였을 때 폭주근점 및 융합여력의 변화에 미치는 영향을 알아보고자 하였다. 방법: 안질환, 안과적 수술 및 조절기능의 이상이 없고 교정시력이 1.0 이상인 20대 40명을 대상으로 40분, 90분 동안 안구를 수평방향 및 수직방향으로 움직여야 하는 게임을 각각 실시하게 한 후 수평 및 수직 융합여력 및 폭주근점 값을 측정하였다. 결과: 수평 및 수직방향의 컴퓨터 게임 후 폭주 근점은 게임 전의 검사 값과 비교하여 멀어지는 경향을 보였으며, 수평 및 수직 융합여력은 모두 유의성 있게 감소하였다. 그러나 90분 동안 연속적으로 컴퓨터 게임을 하였을 때에는 융합여력 및 폭주근점의 감소폭이 40분 동안 작업을 수행하였을 경우보다 작았다. 안구의 주 운동방향에 따른 양안시 기능의 변화는 수직방향으로 고정된 운동보다 수평방향에서의 운동에 의해 더 크게 영향을 받는 것으로 나타났다. 결론: 본 연구에서는 video display terminal(VDT) 작업시 안구의 주 운동방향에 따라 융합여력 및 폭주근점의 변화가 다르게 나타남을 밝혔다. 따라서 지속된 VDT 작업에 따른 양안시 기능의 저하를 방지하기 위하여서는 주로 사용하게 되는 외안근에 따라 작업시간의 조정이 다르게 요구됨을 알 수 있었다.

Personalized Face Modeling for Photorealistic Synthesis

  • Kim, Kyungmin;Shim, Hyunjung
    • Journal of International Society for Simulation Surgery
    • /
    • 제2권2호
    • /
    • pp.47-51
    • /
    • 2015
  • Faces play a key role in revealing the personalized attributes such as the identity, emotion, health condition, etc. Due to the importance of faces, computer-assisted face modeling and reconstruction have been actively studied both in computer vision and graphics community. Especially, face reconstruction and realistic face synthesis are well-grounded research problems and various approaches have been proposed during the last decade. In this paper, we discuss a wide range of existing work in face modeling by introducing their target applications, categorizing them upon their methodology and addressing their strength and weakness on performance. Finally, we introduce remaining research issues and suggest the future research direction in face modeling. We believe that this paper provides a high-level overview on face modeling techniques and helps understand the major research issues and the trends of methodology.

개선된 다중 구간 샘플링 배경제거 알고리즘 (An Improved Multiple Interval Pixel Sampling based Background Subtraction Algorithm)

  • 무하마드 타릭 마흐무드;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.1-6
    • /
    • 2019
  • Foreground/background segmentation in video sequences is often one of the first tasks in machine vision applications, making it a critical part of the system. In this paper, we present an improved sample-based technique that provides robust background image as well as segmentation mask. The conventional multiple interval sampling (MIS) algorithm have suffer from the unbalance of computation time per frame and the rapid change of confidence factor of background pixel. To balance the computation amount, a random-based pixel update scheme is proposed and a spatial and temporal smoothing technique is adopted to increase reliability of the confidence factor. The proposed method allows the sampling queue to have more dispersed data in time and space, and provides more continuous and reliable confidence factor. Experimental results revealed that our method works well to estimate stable background image and the foreground mask.

U2Net-based Single-pixel Imaging Salient Object Detection

  • Zhang, Leihong;Shen, Zimin;Lin, Weihong;Zhang, Dawei
    • Current Optics and Photonics
    • /
    • 제6권5호
    • /
    • pp.463-472
    • /
    • 2022
  • At certain wavelengths, single-pixel imaging is considered to be a solution that can achieve high quality imaging and also reduce costs. However, achieving imaging of complex scenes is an overhead-intensive process for single-pixel imaging systems, so low efficiency and high consumption are the biggest obstacles to their practical application. Improving efficiency to reduce overhead is the solution to this problem. Salient object detection is usually used as a pre-processing step in computer vision tasks, mimicking human functions in complex natural scenes, to reduce overhead and improve efficiency by focusing on regions with a large amount of information. Therefore, in this paper, we explore the implementation of salient object detection based on single-pixel imaging after a single pixel, and propose a scheme to reconstruct images based on Fourier bases and use U2Net models for salient object detection.

Deep Reference-based Dynamic Scene Deblurring

  • Cunzhe Liu;Zhen Hua;Jinjiang Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권3호
    • /
    • pp.653-669
    • /
    • 2024
  • Dynamic scene deblurring is a complex computer vision problem owing to its difficulty to model mathematically. In this paper, we present a novel approach for image deblurring with the help of the sharp reference image, which utilizes the reference image for high-quality and high-frequency detail results. To better utilize the clear reference image, we develop an encoder-decoder network and two novel modules are designed to guide the network for better image restoration. The proposed Reference Extraction and Aggregation Module can effectively establish the correspondence between blurry image and reference image and explore the most relevant features for better blur removal and the proposed Spatial Feature Fusion Module enables the encoder to perceive blur information at different spatial scales. In the final, the multi-scale feature maps from the encoder and cascaded Reference Extraction and Aggregation Modules are integrated into the decoder for a global fusion and representation. Extensive quantitative and qualitative experimental results from the different benchmarks show the effectiveness of our proposed method.

A Survey of Face Recognition Techniques

  • Jafri, Rabia;Arabnia, Hamid R.
    • Journal of Information Processing Systems
    • /
    • 제5권2호
    • /
    • pp.41-68
    • /
    • 2009
  • Face recognition presents a challenging problem in the field of image analysis and computer vision, and as such has received a great deal of attention over the last few years because of its many applications in various domains. Face recognition techniques can be broadly divided into three categories based on the face data acquisition methodology: methods that operate on intensity images; those that deal with video sequences; and those that require other sensory data such as 3D information or infra-red imagery. In this paper, an overview of some of the well-known methods in each of these categories is provided and some of the benefits and drawbacks of the schemes mentioned therein are examined. Furthermore, a discussion outlining the incentive for using face recognition, the applications of this technology, and some of the difficulties plaguing current systems with regard to this task has also been provided. This paper also mentions some of the most recent algorithms developed for this purpose and attempts to give an idea of the state of the art of face recognition technology.

SIFT 와 SURF 알고리즘의 성능적 비교 분석 (Comparative Analysis of the Performance of SIFT and SURF)

  • 이용환;박제호;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제12권3호
    • /
    • pp.59-64
    • /
    • 2013
  • Accurate and robust image registration is important task in many applications such as image retrieval and computer vision. To perform the image registration, essential required steps are needed in the process: feature detection, extraction, matching, and reconstruction of image. In the process of these function, feature extraction not only plays a key role, but also have a big effect on its performance. There are two representative algorithms for extracting image features, which are scale invariant feature transform (SIFT) and speeded up robust feature (SURF). In this paper, we present and evaluate two methods, focusing on comparative analysis of the performance. Experiments for accurate and robust feature detection are shown on various environments such like scale changes, rotation and affine transformation. Experimental trials revealed that SURF algorithm exhibited a significant result in both extracting feature points and matching time, compared to SIFT method.