• Title/Summary/Keyword: Computer Vision Technology

Search Result 685, Processing Time 0.051 seconds

IMAGE PROCESSING TECHNIQUES FOR LANE-RELATED INFORMATION EXTRACTION AND MULTI-VEHICLE DETECTION IN INTELLIGENT HIGHWAY VEHICLES

  • Wu, Y.J.;Lian, F.L.;Huang, C.P.;Chang, T.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.513-520
    • /
    • 2007
  • In this paper, we propose an approach to identify the driving environment for intelligent highway vehicles by means of image processing and computer vision techniques. The proposed approach mainly consists of two consecutive computational steps. The first step is the lane marking detection, which is used to identify the location of the host vehicle and road geometry. In this step, related standard image processing techniques are adapted for lane-related information. In the second step, by using the output from the first step, a four-stage algorithm for vehicle detection is proposed to provide information on the relative position and speed between the host vehicle and each preceding vehicle. The proposed approach has been validated in several real-world scenarios. Herein, experimental results indicate low false alarm and low false dismissal and have demonstrated the robustness of the proposed detection approach.

A Study on Tool Wear in Drilling of Hot-rolled High Strength Steel (고장력 열연강판의 드릴 가공시 공구마멸에 관한 연구)

  • 신형곤;김성일;김태영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.10-17
    • /
    • 2001
  • Drilling is one of the most important operations performed in the machining industry. And the material of the workpiece has a profound effect on the tool life, the surface finish produced and the overall economy of the process. Hot-rolled high strength steels have been used for automobile structural material, owing to high hardness and machinability of the material. However, in the drilling of hot-rolled high strength steels, the current knowledge of tool wear and machinability are insuf-ficient. There, it is desirable to monitor drill wear status and hole quality changes during the hole drilling process. Accordingly, this paper deals with the cutting characteristics of the hot-rolled high strength steels using common HSS drill. The performance variables include the drilling thrust, torque and drill wear data obtained from drilling experiments con-ducted on the workpiece. Also drill were is measured by acoustic emission system and computer vision system.

  • PDF

Extraordinary State Discrimination of Grinding Wheel Surface Using Pattern Classification (패턴 분류법을 이용한 연삭 숫돌면의 이상상태 판별)

  • 유은이
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.447-452
    • /
    • 2000
  • The grinding plays a key role which decide the quality of a product finally. But the grinding process is very irregular, so it is very difficult to analyse the process accurately. Therefore it is very important in the aspect of precision and automation to reduce the idle time and to decide the proper dressing time by visualizing. In this study, we choose the direct method of observation by making use of computer vision, and apply pattern classification technique to the method of measuring the wheel surface. Pattern classification technique is proper to analyse complex surface image. We observe the change of the wheel surface by making use of the gray level run lengths which are representative prince in this technique.

  • PDF

Used the Computer Vision System Develop of Algorithm for Aluminium Mill Strip Defect Inspection (컴퓨터 비젼 시스템을 이용한 알루미늄표면 검사 알고리즘 개발)

  • 이용중
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.115-120
    • /
    • 2000
  • This study is on the application the image processing algorithm for inspection of the aluminium mill strip surface defect. The image of surface defect data was obtained using the CCD camera with the digital signal board. The edge was found from the difference of pixel intensity between the normal image and defect image. Two step were taken to find the edge in the image processing algorithm. First, noise was removed by using the median filter in the image. Second, the edge was sharpened in detail by using the sharpening convolution filter in the image. Canny algorithm was used to defect the exact edge. The defect section was separated from the original image is to find the coordination point p1 and p2 which include the defect image

  • PDF

Computer vision based unmanned bus operating system (컴퓨터 비전 기반 무인 버스 운행시스템)

  • Lee, Yong-Han;Kim, Beom-Young;Lee, Sin-Hyo;Lee, Ji-Hun
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.716-719
    • /
    • 2017
  • This system is designed for autonomous buses. It controls buses by lane and object recognition using Deep Learning based computer vision technology. Through this system, we can expect to reduce traffic costs and increase stability.

Associative Interactive play Contents for Infant Imagination

  • Jang, Eun-Jung;Lee, Chankyu;Lim, Chan
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.126-132
    • /
    • 2019
  • Creative thinking appears even before it is expressed in language, and its existence is revealed through emotion, intuition, image and body feeling before logic or linguistics rules work. In this study, Lego is intended to present experimental child interactive content that is applied with a computer vision based on image processing techniques. In the case of infants, the main purpose of this content is the development of hand muscles and the ability to implement imagination. The purpose of the analysis algorithm of the OpenCV library and the image processing using the 'VVVV' that is implemented as a 'Node' in the midst of perceptual changes in image processing technology that are representative of object recognition, and the objective is to use a webcam to film, recognize, derive results that match the analysis and produce interactive content that is completed by the user participating. Research shows what Lego children have made, and children can create things themselves and develop creativity. Furthermore, we expect to be able to infer a diverse and individualistic person's thinking based on more data.

Current Status of Automatic Fish Measurement (어류의 외부형질 측정 자동화 개발 현황)

  • Yi, Myunggi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.638-644
    • /
    • 2022
  • The measurement of morphological features is essential in aquaculture, fish industry and the management of fishery resources. The measurement of fish requires a large investment of manpower and time. To save time and labor for fish measurement, automated and reliable measurement methods have been developed. Automation was achieved by applying computer vision and machine learning techniques. Recently, machine learning methods based on deep learning have been used for most automatic fish measurement studies. Here, we review the current status of automatic fish measurement with traditional computer vision methods and deep learning-based methods.

Current Trend and Direction of Deep Learning Method to Railroad Defect Detection and Inspection

  • Han, Seokmin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.149-154
    • /
    • 2022
  • In recent years, the application of deep learning method to computer vision has shown to achieve great performances. Thus, many research projects have also applied deep learning technology to railroad defect detection. In this paper, we have reviewed the researches that applied computer vision based deep learning method to railroad defect detection and inspection, and have discussed the current trend and the direction of those researches. Many research projects were targeted to operate automatically without visual inspection of human and to work in real-time. Therefore, methods to speed up the computation were also investigated. The reduction of the number of learning parameters was considered important to improve computation efficiency. In addition to computation speed issue, the problem of annotation was also discussed in some research projects. To alleviate the problem of time consuming annotation, some kinds of automatic segmentation of the railroad defect or self-supervised methods have been suggested.

Identification via Retinal Vessels Combining LBP and HOG

  • Ali Noori;Esmaeil Kheirkhah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.187-192
    • /
    • 2023
  • With development of information technology and necessity for high security, using different identification methods has become very important. Each biometric feature has its own advantages and disadvantages and choosing each of them depends on our usage. Retinal scanning is a bio scale method for identification. The retina is composed of vessels and optical disk. The vessels distribution pattern is one the remarkable retinal identification methods. In this paper, a new approach is presented for identification via retinal images using LBP and hog methods. In the proposed method, it will be tried to separate the retinal vessels accurately via machine vision techniques which will have good sustainability in rotation and size change. HOG-based or LBP-based methods or their combination can be used for separation and also HSV color space can be used too. Having extracted the features, the similarity criteria can be used for identification. The implementation of proposed method and its comparison with one of the newly-presented methods in this area shows better performance of the proposed method.

Development of Image-Based Artificial Intelligence Model to Automate Material Management at Construction Site (공사현장 자재관리 자동화를 위한 영상기반 인공지능 모델개발)

  • Shin, Yoon-soo;Kim, Junhee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.221-222
    • /
    • 2021
  • Conventionally, in material management at a construction site, the type, size, and quantity of materials are identified by the eyes of the worker. Labor-intensive material management by manpower is slow, requires a lot of manpower, is prone to errors, and has limitations in that computerization of information on the identified types and quantities is additionally required. Therefore, a method that can quickly and accurately determine the type, size, and quantity of materials with a minimum number of workers is required to reduce labor costs at the construction site and improve work efficiency. In this study, we developed an automated convolution neural network(CNN) and computer vision technology-based rebar size and quantity estimation system that can quickly and accurately determine the type, size, and quantity of materials through images.

  • PDF