• 제목/요약/키워드: Computer Technology

검색결과 20,245건 처리시간 0.111초

성인대학생의 학업수월성 강화를 위한 모형 (A model for enhancing the academic excellence of adult college students)

  • 김은영;김진숙
    • 문화기술의 융합
    • /
    • 제5권2호
    • /
    • pp.195-200
    • /
    • 2019
  • 본 연구는 성인대학생의 학업수월성 강화를 위한 모형을 제시하고자 하였다. 이를 위해 부산광역시와 대구광역시 및 경북에 위치한 2년제와 4년제 대학교에 재학 중인 성인대학생 408명을 대상으로 조사 및 분석하였다. 모형의 구성요소는 교육내용, 교육방법, 교육평가, 교육운영, 교육환경, 제도적 지원이며, 그 결과는 다음과 같다. 첫째, 성인대학생이 선호하는 교육내용은 학위취득을 위한 다양한 학문적 지식 습득과 업무현장에서의 능력 개발을 위한 지식 및 기술 습득, 사회 전반의 이슈에 대한 새로운 정보 및 지식 습득이다. 둘째, 성인대학생이 선호하는 교육방법 중 교수자의 자질을 보면, 이론과 실무능력을 바탕으로 한 교수의 전문역량을 중시하였다. 선호하는 교수법은 강의법, 토의 토론, 액션러닝, 프로젝트 학습법 순이며, 효과적인 교수매체로는 동영상과 파워포인트를 선호하였다. 셋째, 성인대학생이 선호하는 교육과정 운영은 주말 운영이며, 학사학위 취득기간으로 3년을 선호하였다. 일일 학습 가능한 시간은 3시간~6시간이며, e-learning과 B-learning 및 선행학습경험인정제의 필요성을 나타냈다. 넷째, 성인대학생이 선호하는 교육평가 방법은 절대평가와 상대평가를 혼합한 절충방식이며, Pass or Non Pass 평가방법의 필요성도 나타냈다. 다섯째, 성인대학생이 선호하는 교육환경 중 대학선택의 내적요인은 새로운 지식과 기술 습득이며, 외적요인은 취업 및 직무향상과 관련된 많은 기회를 제공받기 원함이었다. 효과적인 수업을 제공하는 형태의 강의실은 고정 좌석 강의실이며, 교육환경 중 강의실 내부의 환경을 중요시하였다. 여섯째, 성인대학생이 선호하는 제도적 지원은 컴퓨터 활용 관련 프로그램과 학습동아리 지원서비스로 나타났다.

M&S 지원을 위한 HEMOS-Cloud 서비스의 경제적 효과 (Economic Impact of HEMOS-Cloud Services for M&S Support)

  • 정대용;서동우;황재순;박성욱;김명일
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제10권10호
    • /
    • pp.261-268
    • /
    • 2021
  • 클라우드 컴퓨팅은 서비스 사용자 요구에 따라 컴퓨팅 자원을 임대하여 사용하는 컴퓨팅 패러다임이다. 클라우드 컴퓨팅에서 컴퓨팅 자원은 사용자의 서비스 수요에 따라 컴퓨팅 자원을 확장 또는 축소가 가능하여 전체 서비스 비용 절감 효과를 가질 수 있다. 그리고, M&S (Modeling and Simulation) 기술은 컴퓨팅 자원과 CAE 소프트웨어를 통해 엔지니어링 분석 작업 결과를 얻어, 실제 실험 결과가 없이 제품의 상태를 시뮬레이션을 수행하여 분석하는 방법이다. M&S 기술은 FEA(Finite Element Analysis), CFD(Computational Fluid Dynamics), MBD(Multibody Dynamics) 및 최적화 분야에서 활용된다. M&S 통한 작업 절차는 전처리, 해석, 후처리 단계로 구분된다. CAE 소트프웨어를 통한 3D 모델링 작업인 전/후처리는 GPU 연산이 집약적이며, 3D 모델 해석은 CPU 또는 GPU 연산이 요구된다. 일반적인 개인 데스크톱에서 복잡한 3D 모델을 해석하는 시간이 많이 소요된다. 결과적으로, M&S를 원활하게 수행하기 위해서는 고성능 컴퓨팅 자원이 요구된다. 이 문제를 해결하기 위해 우리는 통합 클라우드 및 클러스터 컴퓨팅 환경인 HEMOS-Cloud 서비스를 제안한다. 제안한 클라우드 기반 방식에서는 M&S에 필요한 전/후처리 및 솔버 작업을 원활하게 수행할 수 있도록 구성했다. 이 시스템에서 전/후처리는 VDI(Virtual Desktop Infrastructure)에서 수행되고 해석은 클러스터 환경에서 수행된다. 각 용도에 맞게 서로 다른 환경에서 분리하여 컴퓨팅 자원 간에 간섭을 최소화했다. HEMOS-Cloud 서비스는 기업 또는 학교에서 M&S의 경험이 필요로 하는 사용자에게 CAE 소프트웨어와 컴퓨팅 자원을 제공한다. 본 논문에서는 HEMOS-Cloud 서비스의 경제적 파급효과를 산업연관분석을 활용하여 분석했다. 전문가의 의견을 반영하여 조정된 계수를 통한 분석 결과는 생산유발효과 74억원, 부가가치유발효과 41억원, 취업자유발효과 10억원당 50명으로 분석되었다.

통계분석 및 전산모사 기법을 이용한 적응광학 시스템 성능 예측 (Performance Prediction for an Adaptive Optics System Using Two Analysis Methods: Statistical Analysis and Computational Simulation)

  • 한석기;주지용;이준호;박상영;김영수;정용석;정도환;허준;이기훈
    • 한국광학회지
    • /
    • 제33권4호
    • /
    • pp.167-176
    • /
    • 2022
  • 적응 광학(adaptive optics, AO)은 대기 외란을 실시간으로 보정하는 기술을 말하고, 이러한 적응광학의 효율적 개발을 위하여, 다양한 성능 예측 기법을 도입하여 적응광학이 적용된 시스템 성능 예측을 실시한다. 적응광학의 성능 예측 기법으로 자주 사용되는 기법으로는 통계분석, 전산모사 및 광학 벤치 테스트가 있다. 통계분석에서는 적응광학 시스템을 통계 분석 모델로 가정하여 오차값(분산)의 제곱을 전부 합쳐 스트렐비를 간단하게 추정한다. 다만, 하위 변수 간의 상관 관계는 무시되어 이에 따른 추정의 오류는 존재한다. 다음으로, 전산모사는 대기 난류, 파면센서, 변형거울, 폐쇄 루프 등 모든 구성요소를 가능한 한 실제와 가깝게 모델링하고, 시간 흐름에 따른 적응광학 시스템의 변화를 모두 구현하여 성능 예측을 수행한다. 다만, 전산모사 모델과 현실 사이에는 여전히 일부 차이가 있어, 광학 벤치 테스트를 통하여 시스템 성능을 확인한다. 최근 국내에서 개발된 변형 거울을 적용한 1.6 m 지상 망원경용 적응광학 시스템을 개발 중에 있어, 이에 적용 가능한 적응광학 시스템을 통하여 성능 예측 기법이 요구되며 동시에 성능 예측 기법의 비교를 진행하고자 한다. 앞서 언급된 통계분석 및 전산모사를 이용하여 시스템 성능 예측을 수행하였으며, 성능 예측의 분석을 위해 각각의 성능 예측 기법의 망원경 및 적응광학 시스템 모델링 과정 및 결과를 제시하였다. 이때 성능 예측을 위한 대기 조건으로는 보현산 관측 중앙값(median)을 적용하였다. 그 결과 통계 분석 방법의 경우 평균 스트렐 비가 0.31이 도출됨을 확인하였고, 전산모사 방법의 경우 평균 스트렐 비가 0.32를 가짐을 확인함으로써 두 방법에 의한 예측이 거의 유사함을 확인할 수 있었다. 추가적으로, 전산모사의 경우 해석 결과의 신뢰성을 확보하기 위하여, 모사 시간이 대기 임계 시간 상수의 약 240배인 0.9초 이상 수행되어야 함을 알 수 있었다.

클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현 (Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment)

  • 김명진;한승호;최운;이한구
    • 인터넷정보학회논문지
    • /
    • 제14권6호
    • /
    • pp.71-84
    • /
    • 2013
  • 컴퓨터 시스템 운용 간에 발생하는 많은 정보들이 기록되는 로그데이터는 컴퓨터 시스템 운용 점검, 프로세스의 최적화, 사용자 최적화 맞춤형 제공 등 다방면으로 활용되고 있다. 본 논문에서는 다양한 종류의 로그데이터들 중에서 은행에서 발생하는 대용량의 로그데이터를 처리하기 위한 클라우드 환경 하에서의 MongoDB 기반 비정형 로그 처리시스템을 제안한다. 은행업무간 발생하는 대부분의 로그데이터는 고객의 업무처리 프로세스 간에 발생하며, 고객 업무 프로세스 처리에 따른 로그데이터를 수집, 저장, 분류, 분석하기 위해서는 별도로 로그데이터를 처리하는 시스템을 구축해야만 한다. 하지만 기존 컴퓨팅환경 하에서는 폭발적으로 증가하는 대용량 비정형 로그데이터 처리를 위한 유연한 스토리지 확장성 기능, 저장된 비정형 로그데이터를 분류, 분석 처리할 수 있는 기능을 구현하기가 매우 어렵다. 이에 따라 본 논문에서는 클라우드 컴퓨팅 기술을 도입하여 기존 컴퓨팅 인프라 환경의 분석 도구 및 관리체계에서 처리하기 어려웠던 비정형 로그데이터를 처리하기 위한 클라우드 환경기반의 로그데이터 처리시스템을 제안하고 구현하였다. 제안한 본 시스템은 IaaS(Infrastructure as a Service) 클라우드 환경을 도입하여 컴퓨팅 자원의 유연한 확장성을 제공하며 실제로, 로그데이터가 장기간 축적되거나 급격하게 증가하는 상황에서 스토리지, 메모리 등의 자원을 신속성 있고 유연하게 확장을 할 수 있는 기능을 포함한다. 또한, 축적된 비정형 로그데이터의 실시간 분석이 요구되어질 때 기존의 분석도구의 처리한계를 극복하기 위해 본 시스템은 하둡 (Hadoop) 기반의 분석모듈을 도입함으로써 대용량의 로그데이터를 빠르고 신뢰성 있게 병렬 분산 처리할 수 있는 기능을 제공한다. 게다가, HDFS(Hadoop Distributed File System)을 도입함으로써 축적된 로그데이터를 블록단위로 복제본을 생성하여 저장관리하기 때문에 본 시스템은 시스템 장애와 같은 상황에서 시스템이 멈추지 않고 작동할 수 있는 자동복구 기능을 제공한다. 마지막으로, 본 시스템은 NoSQL 기반의 MongoDB를 이용하여 분산 데이터베이스를 구축함으로써 효율적으로 비정형로그데이터를 처리하는 기능을 제공한다. MySQL과 같은 관계형 데이터베이스는 복잡한 스키마 구조를 가지고 있기 때문에 비정형 로그데이터를 처리하기에 적합하지 않은 구조를 가지고 있다. 또한, 관계형 데이터베이스의 엄격한 스키마 구조는 장기간 데이터가 축적되거나, 데이터가 급격하게 증가할 때 저장된 데이터를 분할하여 여러 노드에 분산시키는 노드 확장이 어렵다는 문제점을 가지고 있다. NoSQL은 관계형 데이터베이스에서 제공하는 복잡한 연산을 지원하지는 않지만 데이터가 빠르게 증가할 때 노드 분산을 통한 데이터베이스 확장이 매우 용이하며 비정형 데이터를 처리하는데 매우 적합한 구조를 가지고 있는 비관계형 데이터베이스이다. NoSQL의 데이터 모델은 주로 키-값(Key-Value), 컬럼지향(Column-oriented), 문서지향(Document-Oriented)형태로 구분되며, 제안한 시스템은 스키마 구조가 자유로운 문서지향(Document-Oriented) 데이터 모델의 대표 격인 MongoDB를 도입하였다. 본 시스템에 MongoDB를 도입한 이유는 유연한 스키마 구조에 따른 비정형 로그데이터 처리의 용이성뿐만 아니라, 급격한 데이터 증가에 따른 유연한 노드 확장, 스토리지 확장을 자동적으로 수행하는 오토샤딩 (AutoSharding) 기능을 제공하기 때문이다. 본 논문에서 제안하는 시스템은 크게 로그 수집기 모듈, 로그 그래프생성 모듈, MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈로 구성되어져 있다. 로그 수집기 모듈은 각 은행에서 고객의 업무 프로세스 시작부터 종료 시점까지 발생하는 로그데이터가 클라우드 서버로 전송될 때 로그데이터 종류에 따라 데이터를 수집하고 분류하여 MongoDB 모듈과 MySQL 모듈로 분배하는 기능을 수행한다. 로그 그래프생성 모듈은 수집된 로그데이터를 분석시점, 분석종류에 따라 MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈에 의해서 분석되어진 결과를 사용자에게 웹 인터페이스 형태로 제공하는 역할을 한다. 실시간적 로그데이터분석이 필요한 로그데이터는 MySQL 모듈로 저장이 되어 로그 그래프생성 모듈을 통하여 실시간 로그데이터 정보를 제공한다. 실시간 분석이 아닌 단위시간당 누적된 로그데이터의 경우 MongoDB 모듈에 저장이 되고, 다양한 분석사항에 따라 사용자에게 그래프화해서 제공된다. MongoDB 모듈에 누적된 로그데이터는 Hadoop기반 분석모듈을 통해서 병렬 분산 처리 작업이 수행된다. 성능 평가를 위하여 로그데이터 삽입, 쿼리 성능에 대해서 MySQL만을 적용한 로그데이터 처리시스템과 제안한 시스템을 비교 평가하였으며 그 성능의 우수성을 검증하였다. 또한, MongoDB의 청크 크기별 로그데이터 삽입 성능평가를 통해 최적화된 청크 크기를 확인하였다.

스마트 모바일 환경에서 의료정보 동적접근 시스템 (Medical Information Dynamic Access System in Smart Mobile Environments)

  • 정창원;김우홍;윤권하;주수종
    • 인터넷정보학회논문지
    • /
    • 제16권1호
    • /
    • pp.47-55
    • /
    • 2015
  • 최근, 병원정보시스템의 환경은 다양한 스마트 기술을 접목하고 있는 추세이다. 따라서, 스마트 폰, 테블렛 PC와 같은 다양한 스마트 디바이스가 의료 정보 시스템에 활용된다. 또한, 이러한 환경은 이기종 센서, 디바이스, 시스템 및 네트워크에서 실행되는 다양한 응용 프로그램으로 구성된다. 이들 병원 정보 시스템 환경에서, 기존의 접근 제어 방식에 의한 보안 서비스를 적용하는 것은 문제가 된다. 기존 보안 방식의 대부분은 접근제어 리스트 구조를 사용한다. 이는 클라이언트 이름, 서비스 객체 메소드 이름으로 접근 제어 매트릭스에 의해 정의된 접근만을 허용한다. 가장 큰 문제점으로는 정적인 접근 방법은 변화되는 상황에 신속하게 적응하지 못한다. 따라서, 우리는 보다 유연하고, 매우 상이한 보안 요구와 다양한 환경에 적용 할 수 있는 새로운 보안 메커니즘을 필요로 한다. 또한, 환자중심의 의료 서비스 형태로 변화되고 있어, 이를 해결하기 위한 연구가 요구된다. 본 논문에서는 스마트 모바일 환경에서 의료정보 동적접근 시스템을 제안하고자 한다. 우리는 기존 병원정보 시스템의 환경을 기반으로 동적접근 제어 방법으로 의료정보 시스템에 접근하는 방법에 중점을 두었다. 물리적인 환경은 모바일 x-ray 영상 디바이스와 전용 모바일 스마트 디바이스, PACS, EMR 서버와 인증 서버로 구성하였다. 소프트웨어 환경은 모바일 X-ray영상기기는 Windows7 OS를 기반으로 동기화 및 모니터링 서비스를 위해 .Net Framework를 기반으로 개발하였다. 그리고 전용 스마트 디바이스는 Android OS를 기반으로 JSP와 Java SDK를 통한 동적접근 응용 서비스를 구현하였다. 병원의 의료영상정보 서버와 모바일 X-ray영상기기, 전용 스마트 디바이스간의 의료정보는 의료영상정보 표준인 DICOM을 기준으로 한다. 또한 EMR 정보는 H7을 기반으로 한다. 동적접근 제어 서비스를 제공하기 위해, 우리는 산소포화도, 심박수, 혈압과 체온과 같은 생체 정보의 값에 대한 조건에 의해 환자의 상황을 분류하고, 의료진의 의료정보 접속 인증 방법으로 동적인 접근 방법을 설계했다. 이는 일반 상태와 응급상태로 2부분으로 구분하여 이벤트 추적 다이어그램으로 보였다. 그리고, 인증 정보는 ID/PWD와 위치, 역할, 작업시간 그리고 응급 환자를 위한 응급 코드를 포함하였다. 동적접근 제어 방법의 일반적인 상황은 인증 정보의 값에 의해 의료정보에 접근 할 수 있다. 그러나 응급상황의 경우는 인증 정보 없이 응급 코드에 의해 의료정보에 접근하도록 하였다. 또한, 우리는 의료정보 표준에 따라 환자, 의료진 및 의료 영상 정보로 구성되는 의료정보 통합 데이터베이스 스키마를 구축했다. 끝으로, 우리는 제안 시스템의 수행 결과를 일반과 응급상황과 같은 환자의 상태에 따라 스마트 디바이스 기반으로 동적접근 응용 서비스의 유용성을 보였다. 특히, 제안 된 시스템은 동적 액세스 제어 방법에 의해 응급상황에서 스마트 디바이스기반의 효과적인 의료 정보 서비스를 제공한다. 이 결과, 제안한 시스템이 u-병원 정보 시스템과 서비스에 유용할 것으로 기대한다.

빅데이터의 효과적인 처리 및 활용을 위한 클라이언트-서버 모델 설계 (Design of Client-Server Model For Effective Processing and Utilization of Bigdata)

  • 박대서;김화종
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.109-122
    • /
    • 2016
  • 최근 빅데이터 분석은 기업과 전문가뿐만 아니라 개인이나 비전문가들도 큰 관심을 갖는 분야로 발전하였다. 그에 따라 현재 공개된 데이터 또는 직접 수집한 이터를 분석하여 마케팅, 사회적 문제 해결 등에 활용되고 있다. 국내에서도 다양한 기업들과 개인이 빅데이터 분석에 도전하고 있지만 빅데이터 공개의 제한과 수집의 어려움으로 분석 초기 단계에서부터 어려움을 겪고 있다. 본 논문에서는 빅데이터 공유를 방해하는 개인정보, 빅트래픽 등의 요소들에 대한 기존 연구와 사례들을 살펴보고 정책기반의 해결책이 아닌 시스템을 통해서 빅데이터 공유 제한 문제를 해결 할 수 있는 클라이언트-서버 모델을 이용해 빅데이터를 공개 및 사용 할 때 발생하는 문제점들을 해소하고 공유와 분석 활성화를 도울 수 있는 방안에 대해 기술한다. 클라이언트-서버 모델은 SPARK를 활용해 빠른 분석과 사용자 요청을 처리하며 Server Agent와 Client Agent로 구분해 데이터 제공자가 데이터를 공개할 때 서버 측의 프로세스와 데이터 사용자가 데이터를 사용하기 위한 클라이언트 측의 프로세스로 구분하여 설명한다. 특히, 빅데이터 공유, 분산 빅데이터 처리, 빅트래픽 문제에 초점을 맞추어 클라이언트-서버 모델의 세부 모듈을 구성하고 각 모듈의 설계 방법에 대해 제시하고자 한다. 클라이언트-서버 모델을 통해서 빅데이터 공유문제를 해결하고 자유로운 공유 환경을 구성하여 안전하게 빅데이터를 공개하고 쉽게 빅데이터를 찾는 이상적인 공유 서비스를 제공할 수 있다.

적응형 부스팅을 이용한 파산 예측 모형: 건설업을 중심으로 (Bankruptcy Forecasting Model using AdaBoost: A Focus on Construction Companies)

  • 허준영;양진용
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.35-48
    • /
    • 2014
  • 2013년 건설 경기 전망 보고서에 따르면 주택건설경기 침체 상황의 지속으로 건설 기업의 유동성 위기가 지속될 것으로 전망된다. 건설업은 파산으로 인한 사회적 파급효과가 다른 산업에 비해 큰 편이지만, 업종의 특성상 다른 산업과는 상이한 자본구조와 부채비율, 현금흐름을 가지고 있어서 기업의 파산 예측이 더 어려운 측면이 있다. 건설업은 레버리지가 큰 산업으로 부채비율이 매우 높은 업종이며 현금흐름이 프로젝트 후반부에 집중되는 특성이 있다. 그리고 경기사이클에 따른 부침이 매우 심하여 경기하강국면에선 파산이 급증하는 양상을 보인다. 건설업이 레버리지 산업인 이상 건설업체의 파산율 증가는 여신을 공여한 은행에 큰 부담으로 작용한다. 그럼에도 그간의 파산예측모델이 주로 금융기관에 집중되어 왔고 건설업종에 특화된 연구는 드물었다. 기업의 재무 자료를 바탕으로 한 파산 예측 모델에 대한 연구는 오래 전부터 다양하게 진행되었다. 하지만, 일반적인 기업 전체를 대상으로 하는 모델이기 때문에, 건설 기업과 같이 유동성이 큰 기업의 예측에는 적절하지 못할 수 있다. 건설 산업은 오랜 사업 기간과 대규모 투자, 그리고 투자금 회수가 오래 걸리는 특징을 갖는 자본 집약 산업이다. 이로 인해 다른 산업과는 상이한 자본 구조를 갖기 마련이고, 다른 산업의 기업 재무 위험도를 판단하는 기준과 동일한 적용이 곤란할 수 있다. 최근에는 기계 학습을 바탕으로 한 기업 파산 예측 연구가 활발하다. 기계 학습의 대표적 응용 분야인 패턴 인식을 기업의 파산 예측에 응용한 것이다. 기업의 재무 정보를 바탕으로 패턴을 작성하고 이 패턴이 파산 위험 군에 속하는지 안전한 군에 속하는지 판단하는 것이다. 전통적인 Z-Score와 기계 학습을 이용한 파산 예측과 같은 기존 연구들은 특정 산업 분야가 아닌 일반적인 기업을 대상으로 하기 때문에 기업들의 특성을 전혀 고려하고 있지 못하다. 본 논문에서는 건설 기업을 규모에 따라 각 기법들의 예측 능력을 비교하여 적응형 부스팅이 가장 우수함을 확인하였다. 본 논문은 건설 기업을 자본금 규모에 따라 세 등급으로 분류하고 각각에 대해 적응형 부스팅의 예측력을 분석하였다. 실험 결과 적응형 부스팅이 다른 기법에 비해 예측 결과가 좋았고, 특히 자본금 규모가 500억 이상인 기업의 경우 아주 우수한 결과를 보였다.

구인구직사이트의 구인정보 기반 지능형 직무분류체계의 구축 (Development of Intelligent Job Classification System based on Job Posting on Job Sites)

  • 이정승
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.123-139
    • /
    • 2019
  • 주요 구인구직사이트의 직무분류체계가 사이트마다 상이하고 SW분야에서 제안한 'SQF(Sectoral Qualifications Framework)'의 직무분류체계와도 달라 SW산업에서 SW기업, SW구직자, 구인구직사이트가 모두 납득할 수 있는 새로운 직무분류체계가 필요하다. 본 연구의 목적은 주요 구인구직사이트의 구인정보와 'NCS(National Competaency Standars)'에 기반을 둔 SQF를 분석하여 시장 수요를 반영한 표준 직무분류체계를 구축하는 것이다. 이를 위해 주요 구인구직사이트의 직종 간 연관분석과 SQF와 직종 간 연관분석을 실시하여 직종 간 연관규칙을 도출하고자 한다. 이 연관규칙을 이용하여 주요 구인구직사이트의 직무분류체계를 맵핑하고 SQF와 직무 분류체계를 맵핑함으로써 데이터 기반의 지능형 직무분류체계를 제안하였다. 연구 결과 국내 주요 구인구직사이트인 '워크넷,' '잡코리아,' '사람인'에서 3만여 건의 구인정보를 open API를 이용하여 XML 형태로 수집하여 데이터베이스에 저장했다. 이 중 복수의 구인구직사이트에 동시 게시된 구인정보 900여 건을 필터링한 후 빈발 패턴 마이닝(frequent pattern mining)인 Apriori 알고리즘을 적용하여 800여 개의 연관규칙을 도출하였다. 800여 개의 연관규칙을 바탕으로 워크넷, 잡코리아, 사람인의 직무분류체계와 SQF의 직무분류체계를 맵핑하여 1~4차로 분류하되 분류의 단계가 유연한 표준 직무분류체계를 새롭게 구축했다. 본 연구는 일부 전문가의 직관이 아닌 직종 간 연관분석을 통해 데이터를 기반으로 직종 간 맵핑을 시도함으로써 시장 수요를 반영하는 새로운 직무분류체계를 제안했다는데 의의가 있다. 다만 본 연구는 데이터 수집 시점이 일시적이기 때문에 시간의 흐름에 따라 변화하는 시장의 수요를 충분히 반영하지 못하는 한계가 있다. 계절적 요인과 주요 공채 시기 등 시간에 따라 시장의 요구하는 변해갈 것이기에 더욱 정확한 매칭을 얻기 위해서는 지속적인 데이터 모니터링과 반복적인 실험이 필요하다. 본 연구 결과는 향후 SW산업 분야에서 SQF의 개선방향을 제시하는데 활용될 수 있고, SW산업 분야에서 성공을 경험삼아 타 산업으로 확장 이전될 수 있을 것으로 기대한다.

SANET-CC : 해상 네트워크를 위한 구역 IP 할당 프로토콜 (SANET-CC : Zone IP Allocation Protocol for Offshore Networks)

  • 배경율;조문기
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.87-109
    • /
    • 2020
  • 현재 육상에서는 유무선 통신의 발전으로 다양한 IT 서비스를 제공받고 있다. 이러한 변화는 육상을 넘어서서 해상에서 항해 중인 선박에서도 다양한 IT 서비스가 제공되어야 하며 육상에서 이용하는 것과 마찬가지로 양방향 디지털 데이터 전송, Web, App 등과 같은 다양한 IT 서비스들의 제공에 대한 요구가 증가될 것으로 예상하고 있다. 하지만 이러한 초고속 정보통신망은 AP(Access Point)와 기지국과 같은 고정된 기반 구조를 바탕으로 네트워크를 구성하는 지상에서는 쉽게 사용할 수 있는 반면 해상에서는 고정된 기반 구조를 이용하여 네트워크를 구성할 수 없다. 그래서 전송 거리가 긴 라디오 통신망 기반의 음성 위주의 통신 서비스를 사용하고 있다. 이러한 라디오 통신망은 낮은 전송 속도로 인해 매우 기본적인 정보만을 제공할 수 있었으며, 효율적인 서비스 제공에 어려움이 있다. 이를 해결하기 위해서 디지털 데이터 상호교환을 위한 추가적인 주파수가 할당되었으며 이 주파수를 사용하여 활용할 수 있는 선박 애드 혹 네트워크인 SANET(ship ad-hoc network)이 제안되었다. SANET은 높은 설치비용과 사용료의 위성 통신을 대신하여 해상에서 IP 기반으로 선박에 다양한 IT 서비스를 제공할 수 있도록 개발되었다. SANET에서는 육상 기지국과 선박의 연결성이 중요하다. 이러한 연결성을 갖기 위해서는 선박은 자신의 IP 주소를 할당 받아 네트워크의 구성원이 되어야 한다. 본 논문에서는 선박 스스로 자신의 IP 주소를 할당 받을 수 있는 SANET-CC(Ship Ad-hoc Network-Cell Connection) 프로토콜을 제안한다. SANET-CC는 중복되지 않는 다수의 IP 주소들을 육상기지국에서 선박들에 이어지는 트리 형태로 네트워크 전반에 전파한다. 선박은 IP 주소를 할당할 수 있는 육상 기지국 또는 나누어진 구역의 M-Ship(Mother Ship)들과 간단한 요청(Request) 및 응답(Response) 메시지 교환을 통해 자신의 IP 주소를 할당한다. 따라서 SANET-CC는 IP 충돌 방지(Duplicate Address Detection) 과정과 선박의 이동에 의해 발생하는 네트워크의 분리나 통합에 따른 처리 과정을 완전히 배제할 수 있다. 본 논문에서는 SANET-CC의 SANET 적용가능성을 검증하기 위해서 다양한 조건의 시뮬레이션을 수행하였으며 기존 연구와 비교 분석을 진행하였다.

Perceptional Change of a New Product, DMB Phone

  • Kim, Ju-Young;Ko, Deok-Im
    • 마케팅과학연구
    • /
    • 제18권3호
    • /
    • pp.59-88
    • /
    • 2008
  • Digital Convergence means integration between industry, technology, and contents, and in marketing, it usually comes with creation of new types of product and service under the base of digital technology as digitalization progress in electro-communication industries including telecommunication, home appliance, and computer industries. One can see digital convergence not only in instruments such as PC, AV appliances, cellular phone, but also in contents, network, service that are required in production, modification, distribution, re-production of information. Convergence in contents started around 1990. Convergence in network and service begins as broadcasting and telecommunication integrates and DMB(digital multimedia broadcasting), born in May, 2005 is the symbolic icon in this trend. There are some positive and negative expectations about DMB. The reason why two opposite expectations exist is that DMB does not come out from customer's need but from technology development. Therefore, customers might have hard time to interpret the real meaning of DMB. Time is quite critical to a high tech product, like DMB because another product with same function from different technology can replace the existing product within short period of time. If DMB does not positioning well to customer's mind quickly, another products like Wibro, IPTV, or HSPDA could replace it before it even spreads out. Therefore, positioning strategy is critical for success of DMB product. To make correct positioning strategy, one needs to understand how consumer interprets DMB and how consumer's interpretation can be changed via communication strategy. In this study, we try to investigate how consumer perceives a new product, like DMB and how AD strategy change consumer's perception. More specifically, the paper segment consumers into sub-groups based on their DMB perceptions and compare their characteristics in order to understand how they perceive DMB. And, expose them different printed ADs that have messages guiding consumer think DMB in specific ways, either cellular phone or personal TV. Research Question 1: Segment consumers according to perceptions about DMB and compare characteristics of segmentations. Research Question 2: Compare perceptions about DMB after AD that induces categorization of DMB in direction for each segment. If one understand and predict a direction in which consumer perceive a new product, firm can select target customers easily. We segment consumers according to their perception and analyze characteristics in order to find some variables that can influence perceptions, like prior experience, usage, or habit. And then, marketing people can use this variables to identify target customers and predict their perceptions. If one knows how customer's perception is changed via AD message, communication strategy could be constructed properly. Specially, information from segmented customers helps to develop efficient AD strategy for segment who has prior perception. Research framework consists of two measurements and one treatment, O1 X O2. First observation is for collecting information about consumer's perception and their characteristics. Based on first observation, the paper segment consumers into two groups, one group perceives DMB similar to Cellular phone and the other group perceives DMB similar to TV. And compare characteristics of two segments in order to find reason why they perceive DMB differently. Next, we expose two kinds of AD to subjects. One AD describes DMB as Cellular phone and the other Ad describes DMB as personal TV. When two ADs are exposed to subjects, consumers don't know their prior perception of DMB, in other words, which subject belongs 'similar-to-Cellular phone' segment or 'similar-to-TV' segment? However, we analyze the AD's effect differently for each segment. In research design, final observation is for investigating AD effect. Perception before AD is compared with perception after AD. Comparisons are made for each segment and for each AD. For the segment who perceives DMB similar to TV, AD that describes DMB as cellular phone could change the prior perception. And AD that describes DMB as personal TV, could enforce the prior perception. For data collection, subjects are selected from undergraduate students because they have basic knowledge about most digital equipments and have open attitude about a new product and media. Total number of subjects is 240. In order to measure perception about DMB, we use indirect measurement, comparison with other similar digital products. To select similar digital products, we pre-survey students and then finally select PDA, Car-TV, Cellular Phone, MP3 player, TV, and PSP. Quasi experiment is done at several classes under instructor's allowance. After brief introduction, prior knowledge, awareness, and usage about DMB as well as other digital instruments is asked and their similarities and perceived characteristics are measured. And then, two kinds of manipulated color-printed AD are distributed and similarities and perceived characteristics for DMB are re-measured. Finally purchase intension, AD attitude, manipulation check, and demographic variables are asked. Subjects are given small gift for participation. Stimuli are color-printed advertising. Their actual size is A4 and made after several pre-test from AD professionals and students. As results, consumers are segmented into two subgroups based on their perceptions of DMB. Similarity measure between DMB and cellular phone and similarity measure between DMB and TV are used to classify consumers. If subject whose first measure is less than the second measure, she is classified into segment A and segment A is characterized as they perceive DMB like TV. Otherwise, they are classified as segment B, who perceives DMB like cellular phone. Discriminant analysis on these groups with their characteristics of usage and attitude shows that Segment A knows much about DMB and uses a lot of digital instrument. Segment B, who thinks DMB as cellular phone doesn't know well about DMB and not familiar with other digital instruments. So, consumers with higher knowledge perceive DMB similar to TV because launching DMB advertising lead consumer think DMB as TV. Consumers with less interest on digital products don't know well about DMB AD and then think DMB as cellular phone. In order to investigate perceptions of DMB as well as other digital instruments, we apply Proxscal analysis, Multidimensional Scaling technique at SPSS statistical package. At first step, subjects are presented 21 pairs of 7 digital instruments and evaluate similarity judgments on 7 point scale. And for each segment, their similarity judgments are averaged and similarity matrix is made. Secondly, Proxscal analysis of segment A and B are done. At third stage, get similarity judgment between DMB and other digital instruments after AD exposure. Lastly, similarity judgments of group A-1, A-2, B-1, and B-2 are named as 'after DMB' and put them into matrix made at the first stage. Then apply Proxscal analysis on these matrixes and check the positional difference of DMB and after DMB. The results show that map of segment A, who perceives DMB similar as TV, shows that DMB position closer to TV than to Cellular phone as expected. Map of segment B, who perceive DMB similar as cellular phone shows that DMB position closer to Cellular phone than to TV as expected. Stress value and R-square is acceptable. And, change results after stimuli, manipulated Advertising show that AD makes DMB perception bent toward Cellular phone when Cellular phone-like AD is exposed, and that DMB positioning move towards Car-TV which is more personalized one when TV-like AD is exposed. It is true for both segment, A and B, consistently. Furthermore, the paper apply correspondence analysis to the same data and find almost the same results. The paper answers two main research questions. The first one is that perception about a new product is made mainly from prior experience. And the second one is that AD is effective in changing and enforcing perception. In addition to above, we extend perception change to purchase intention. Purchase intention is high when AD enforces original perception. AD that shows DMB like TV makes worst intention. This paper has limitations and issues to be pursed in near future. Methodologically, current methodology can't provide statistical test on the perceptual change, since classical MDS models, like Proxscal and correspondence analysis are not probability models. So, a new probability MDS model for testing hypothesis about configuration needs to be developed. Next, advertising message needs to be developed more rigorously from theoretical and managerial perspective. Also experimental procedure could be improved for more realistic data collection. For example, web-based experiment and real product stimuli and multimedia presentation could be employed. Or, one can display products together in simulated shop. In addition, demand and social desirability threats of internal validity could influence on the results. In order to handle the threats, results of the model-intended advertising and other "pseudo" advertising could be compared. Furthermore, one can try various level of innovativeness in order to check whether it make any different results (cf. Moon 2006). In addition, if one can create hypothetical product that is really innovative and new for research, it helps to make a vacant impression status and then to study how to form impression in more rigorous way.

  • PDF