This study proposes a novel deep neural network model that can accurately detect objects and their relationships in an image and represent them as a scene graph. The proposed model utilizes several multimodal features, including linguistic features and visual context features, to accurately detect objects and relationships. In addition, in the proposed model, context features are embedded using graph neural networks to depict the dependencies between two related objects in the context feature vector. This study demonstrates the effectiveness of the proposed model through comparative experiments using the Visual Genome benchmark dataset.
Proceedings of the Korea Information Processing Society Conference
/
2010.11a
/
pp.519-522
/
2010
유비쿼터스 환경에서 서비스를 개발하는데 협업모델이 중요한 주제로 연구되어 왔다. 본 연구에서는 이를 위한 방법으로 커뮤니티 컴퓨팅 모델을 MDA(Model Driven Architecture)에 기반하여 개발하고 있다. MDA에 기반한 커뮤니티 컴퓨팅 모델을 PICM(Platform Independent Community Model)에서 PSCM(Platform Specific Community Model)을 거쳐 최종 프로그램으로 개발된다. 본 논문에서는 PICM에서 PSCM으로 변환되는 방법을 규칙에 기반하여 제안하고 이를 구현한다.
Khan, Naeem Akhtar;Ahmad, Farooq;Hussain, Syed Asad;Naseer, Mudasser
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.8
/
pp.3656-3671
/
2016
Most of the research in the area of wireless communications exclusively relies on simulations. Further, it is essential that the mobility management strategies and routing protocols should be validated under realistic conditions. Most appropriate mobility models play a pivotal role to determine, whether there is any subtle error or flaw in a proposed model. Simulators are the standard tool to evaluate the performance of mobility models however sometimes they suffer from numerous documented problems. To accomplish the widely acknowledged lack of formalization in this domain, a Coloured Petri nets (CPNs) based random direction mobility model for specification, analysis and validation is presented in this paper for wireless communications. The proposed model does not suffer from any border effect or speed decay issues. It is important to mention that capturing the mobility patterns through CPN is challenging task in this type of the research. Further, an appropriate formalism of CPNs supported to analyze the future system dynamic status. Finally the formal model is evaluated with the state space analysis to show how predefined behavioral properties can be applied. In addition, proposed model is evaluated based on generated simulations to track origins of errors during debugging.
세분화란 초기 원형 모델의 삼각형 메쉬를 여러 개의 작은 메쉬로 변환하는 기법으로, 간략화 된 모델을 다시 원상태로 표현하기 위해 사용된다. 기존의 보간에 의한 세분화는 전체 모델의 에지에 일률적으로 세분화를 적용하기 때문에, 효과가 적은 부분까지도 세분화가 수행하게 되어 효율이 떨어진다. 본 논문에서는 정점 변화율을 기반으로 에지를 선택하여 세분화를 수행한다. 따라서 원형 메쉬를 변환하여 세분화된 메쉬를 생성할 때, 모델의 각 부분들은 정점 변화율의 차이에 의해 서로 다른 세분화 정도를 가지게 된다. 이 과정을 통해 원형 모델의 곡률 특성이 반영된 세분화를 수행할 수 있게 되고, 전체 모델의 세분화 정도를 조정하는 것도 가능해진다. Abstract The subdivision is a mesh transformation, which makes an original triangle mesh to subdivided meshes. This method is used for recovering original model from simplified model. The existing subdivision based on interpolation is inefficient, because it is targeted for whole edges of mesh model. Therefore, this method applies to non-effective parts. In this paper the subdivision is executed by edge selection based on curvature. When original model is transformed to subdivided model by proposed method, the parts of model has different subdivision degrees by means of the averages of vertex curvature.Proposed method makes it enable subdivision, which deploy characteristics of curvatures of original model and adjusting a degree of subdivision in whole model.
The purposes of the present study are to investigate hemodynamic characteristics and to define shear-sensitive remodeling in the stenosed coronary models. Two models for the compensatory remodelling used for this research are a pre-stenotic dilation and a post-stenotic dilation models for the computer simulation. The peak wall shear stress on the post-stenotic model is higher than that of the pre-stenotic model. Two recirculation zones are generated in the pre-stenotic model, and the zones in the pre-stenotic model are smaller than those in the post-stenotic model. Variation of the wall shear stress in the pre-stenotic model is lower than that in the post-stenotic model. In computer simulation with the post-stenotic model, higher temporal and spatial shear fluctuation and stress suggested shear-sensitive remodeling. Shear-sensitive remodeling may be associated with the increased risk of plaque rupture, the underlying cause of acute coronary syndromes, and sudden cardiac death.
International Journal of Computer Science & Network Security
/
v.22
no.7
/
pp.301-307
/
2022
Energy consumption has grown alongside dramatic population increases. Statistics show that buildings in particular utilize a significant amount of energy, worldwide. Because of this, building energy prediction is crucial to best optimize utilities' energy plans and also create a predictive model for consumers. To improve energy prediction performance, this paper proposes a ResNet-LSTM model that combines residual networks (ResNets) and long short-term memory (LSTM) for energy consumption prediction. ResNets are utilized to extract complex and rich features, while LSTM has the ability to learn temporal correlation; the dense layer is used as a regression to forecast energy consumption. To make our model more robust, we employed Huber loss during the optimization process. Huber loss obtains high efficiency by handling minor errors quadratically. It also takes the absolute error for large errors to increase robustness. This makes our model less sensitive to outlier data. Our proposed system was trained on historical data to forecast energy consumption for different time series. To evaluate our proposed model, we compared our model's performance with several popular machine learning and deep learning methods such as linear regression, neural networks, decision tree, and convolutional neural networks, etc. The results show that our proposed model predicted energy consumption most accurately.
얼굴 추적은 Vision base HCI의 핵심인 얼굴인식, 표정인식 그리고 Gesture recognition등의 다른 여러 기술을 지원하는 중요한 기술이다. 이런 얼굴 추적기술에는 영상(Image)의 Color또는 Contour등의 불변하는 특징들을 사용 하거나 템플릿(template)또는 형태(appearance)를 사용하는 방법 등이 있는데 이런 방법들은 조명환경이나 주위 배경등의 외부 환경에 민감하게 반응함으로 해서 다양한 환경에 사용할 수 없을 뿐더러 얼굴영상만을 정확하게 추출하기도 쉽지 않은 실정이다. 이에 본 논문에서는 deformable한 model을 사용하여 model과 유사한 shape과 appearance를 찾아 내는 AAM(Active Appearance Model)을 사용하는 얼굴 추적 시스템을 제안하고자 한다. 제안된 시스템에는 기존의 Combined AAM이 아닌 Independent AAM을 사용하였고 또한 Fitting Algorithm에 Inverse Compositional Image Alignment를 사용하여 Fitting 속도를 향상 시켰다. AAM Model을 만들기 위한 Train set은 150장의 4가지 형태에 얼굴을 담고 있는 Gray-scale 영상을 사용 하였다. Shape Model은 각 영상마다 직접 표기한 47개의 Vertex를 Trianglize함으로서 생성되는 71개의 Triangles을 하나의 Mesh로 구성하여 생성 하였고, Appearance Model은 Shape 안쪽의 모든 픽셀을 사용해서 생성하였다. 시스템의 성능 평가는 Fitting후 Shape 좌표의 정확도를 측정 함으로서 평가 하였다.
In this paper, a multi-scale model is applied to the simulation of thrombus growth. This model includes macroscale model and microscale model. The former is used to model the plasma flow with Navier-Stokes equations, and the latter is used to model the platelets adhesion and aggregation, thrombus motion, and the surface expansion of thrombus. The force acting on platelets and thrombus from plasma is modeled by the drag force, and the forces from biochemical reactions are modeled by the adhesion force and the aggregation force. As more platelets are merged into the thrombus, the thrombus surface expands. We proposed a thrombus growth model for simulating the expansion of thrombus surface and tracking the surface by Level Set Methods. We implemented the computational model. The model performs well, and the experimental results show that the shape of thrombus in level set expansion form is similar with the thrombus in clinical test.
The Journal of Korean Association of Computer Education
/
v.4
no.1
/
pp.11-18
/
2001
As the usage of computer and internet is growing, ICT-based teaching is required in education. So far almost web-based coursewares are learner-based individual teaching. Current learning theories and learning model in WBI are too focusing on courseware or too general to apply in education directly. In this view, learning model with subject-specific search engine might be a solution. In this thesis, we developed systematic concept learning model, promoting traditional concept learning to suitable model in education field and also, we developed CEhunt(Computer Education Hunter), that is computer education search engine providing the teaching materials and supporting the design of teaching and effective concept learning environment to learners. Also, we verified that this model could have a positive effect in systematic concept forming process of learners for subject concerned.
International Journal of Computer Science & Network Security
/
v.22
no.8
/
pp.328-342
/
2022
The Internet of Things (IoT) is a technology that offers lucrative services in various industries to facilitate human communities. Important information on people and their surroundings has been gathered to ensure the availability of these services. This data is vulnerable to cybersecurity since it is sent over the internet and kept in third-party databases. Implementation of data encryption is an integral approach for IoT device designers to protect IoT data. For a variety of reasons, IoT device designers have been unable to discover appropriate encryption to use. The static support provided by research and concerned organizations to assist designers in picking appropriate encryption costs a significant amount of time and effort. IoTES is a web app that uses machine language to address a lack of support from researchers and organizations, as ML has been shown to improve data-driven human decision-making. IoTES still has some weaknesses, which are highlighted in this research. To improve the support, these shortcomings must be addressed. This study proposes the "IoTES with Security" model by adding support for the security level provided by the encryption algorithm to the traditional IoTES model. We evaluated our technique for encryption algorithms with available security levels and compared the accuracy of our model with traditional IoTES. Our model improves IoTES by helping users make security-oriented decisions while choosing the appropriate algorithm for their IoT data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.