• Title/Summary/Keyword: Computer Input Device

Search Result 313, Processing Time 0.028 seconds

Technical Survey on the Real Time Eye-tracking Pointing Device as a Smart Medical Equipment (실시간 시선 추적기반 스마트 의료기기 고찰)

  • Park, Junghoon;Yim, Kangbin
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2021
  • The eye tracking system designed in this paper is an eye-based computer input device designed to give an easy access for those who are uncomfortable with Lou Gehrig's or various muscle-related diseases. It is an eye-based-computer-using device for users whose potential demand alone amounts to 30,000. Combining the number of Lou Gehrig's patients in Korea estimated at around 1,700, and those who are unable to move their bodies due to various accidents or diseases. Because these eye input devices are intended for a small group of users, many types of commercial devices are available on the market. It is making them more expensive and difficult to use for these potential users, less accessible. For this reason, each individual's economic situation and individual experience with smart devices are slightly different. Therefore, making it difficult to access them in terms of cost or usability to use a commercial eye tracking system. Accordingly, attempts to improve accessibility to IT devices through low-cost but easy-to-use technologies are essential. Thus, this paper proposes a complementary superior performance eye tracking system that can be conveniently used by far more people and patients by improving the deficiencies of the existing system. Through voluntary VoCs(Voice of Customers) of users who have used different kinds of eye tracking systems that satisfies it through various usability tests, and we propose a reduced system that the amount of calculation to 1/15th, and eye-gaze tracking error rate to 0.5~1 degree under.

Implicit Surface Representation of Three-Dimensional Face from Kinect Sensor

  • Wibowo, Suryo Adhi;Kim, Eun-Kyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.412-417
    • /
    • 2015
  • Kinect sensor has two output data which are produced from red green blue (RGB) sensor and depth sensor, it is called color image and depth map, respectively. Although this device's prices are cheapest than the other devices for three-dimensional (3D) reconstruction, we need extra work for reconstruct a smooth 3D data and also have semantic meaning. It happened because the depth map, which has been produced from depth sensor usually have a coarse and empty value. Consequently, it can be make artifact and holes on the surface, when we reconstruct it to 3D directly. In this paper, we present a method for solving this problem by using implicit surface representation. The key idea for represent implicit surface is by using radial basis function (RBF) and to avoid the trivial solution that the implicit function is zero everywhere, we need to defined on-surface point and off-surface point. Based on our simulation results using captured face as an input, we can produce smooth 3D face and fill the holes on the 3D face surface, since RBF is good for interpolation and holes filling. Modified anisotropic diffusion is used to produced smoothed surface.

Integrated Current-Mode DC-DC Buck Converter with Low-Power Control Circuit

  • Jeong, Hye-Im;Lee, Chan-Soo;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.235-241
    • /
    • 2013
  • A low power CMOS control circuit is applied in an integrated DC-DC buck converter. The integrated converter is composed of a feedback control circuit and power block with 0.35 ${\mu}m$ CMOS process. A current-sensing circuit is integrated with the sense-FET method in the control circuit. In the current-sensing circuit, a current-mirror is used for a voltage follower in order to reduce power consumption with a smaller chip-size. The N-channel MOS acts as a switching device in the current-sensing circuit where the sensing FET is in parallel with the power MOSFET. The amplifier and comparator are designed to obtain a high gain and a fast transient time. The converter offers well-controlled output and accurately sensed inductor current. Simulation work shows that the current-sensing circuit is operated with an accuracy of higher than 90% and the transient time of the error amplifier is controlled within $75{\mu}sec$. The sensing current is in the range of a few hundred ${\mu}A$ at a frequency of 0.6~2 MHz and an input voltage of 3~5 V. The output voltage is obtained as expected with the ripple ratio within 1%.

Use of a gesture user interface as a touchless image navigation system in dental surgery: Case series report

  • Rosa, Guillermo M.;Elizondo, Maria L.
    • Imaging Science in Dentistry
    • /
    • v.44 no.2
    • /
    • pp.155-160
    • /
    • 2014
  • Purpose: The purposes of this study were to develop a workstation computer that allowed intraoperative touchless control of diagnostic and surgical images by a surgeon, and to report the preliminary experience with the use of the system in a series of cases in which dental surgery was performed. Materials and Methods: A custom workstation with a new motion sensing input device (Leap Motion) was set up in order to use a natural user interface (NUI) to manipulate the imaging software by hand gestures. The system allowed intraoperative touchless control of the surgical images. Results: For the first time in the literature, an NUI system was used for a pilot study during 11 dental surgery procedures including tooth extractions, dental implant placements, and guided bone regeneration. No complications were reported. The system performed very well and was very useful. Conclusion: The proposed system fulfilled the objective of providing touchless access and control of the system of images and a three-dimensional surgical plan, thus allowing the maintenance of sterile conditions. The interaction between surgical staff, under sterile conditions, and computer equipment has been a key issue. The solution with an NUI with touchless control of the images seems to be closer to an ideal. The cost of the sensor system is quite low; this could facilitate its incorporation into the practice of routine dental surgery. This technology has enormous potential in dental surgery and other healthcare specialties.

Design and Implementation of Low Noise Amplifier for GPS Reciver (GPS수신기용 저잡음 증폭기의 설계 및 구현)

  • 박지언;박재운;변건식
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.2
    • /
    • pp.115-120
    • /
    • 2000
  • This papers describes two low-noise amplifiers that use the Hewlett-Packard ATF-10236 low noise GaAs FET device, The actual measured performance of the amplifiers compares favorably to that predicted by the computer simulation(ADS) the noise figure of the 1575MHz amplifier was measured at 1.78dB which is lower that 2dB as specified. Measurement gam measured 33.0075dB which is within 35dB$\pm$0.5㏈ of the GPS specification. Network Analyzer(HP8510) is used to measure all the s-parameters and Noise Figure meter(HP8970B) is used to measure noise figure. As the result of experiment, gain, input VSWR, output VSWR is within the GPS specification sufficiently.

  • PDF

A Game Framework Development for Smart TV (스마트 TV용 게임 프레임워크 개발)

  • Lee, Sung-Hyun;Rhee, Dae-Woong
    • Journal of Korea Game Society
    • /
    • v.15 no.1
    • /
    • pp.135-144
    • /
    • 2015
  • Smart TV has been the most popular communication device since 2010. It is the multi-functional device conjugated a variety of features such as Apps, Web surfing, viewing VOD and so on. However, the contents and development tools for smart TV are still relatively small and research for game contents development tools is also insufficient. In this study, we are to design and develop a framework for developers to make Smart TV game contents easily. The STGF (Smart TV Game Framework) we developed is made up of 3 managers such as input manager, screen data process manager, and game status process manager. We verified the usefulness of STGF through developing "Pentomiro" App launched commercially in 2013. With STGF development time would be expected to be reduced, because we spend little time in basic development steps such as input, output, and data processing and error correction processing.

PSPICE circuit simulation for electrical characteristic analysis of the memristor (멤리스터의 전기적 특성 분석을 위한 PSPICE 회로 해석)

  • Kim, Boo-Kang;Park, Ho-Jong;Park, Yongsu;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1051-1058
    • /
    • 2014
  • This paper presents a Electrical characteristics of the Memristor device using the PSPICE for circuit analysis. After making macro model of the Memristor device for circuit analysis, electric characteristics of the model such as time analysis, frequency and DC analysis according to the input voltage were performed by PSPICE simulation. Also, we made simple circuits of memristor series and parallel structure and analyzed the simulated SPICE results. Finally, we made a memristor-capacitor (M-C) circuit. charge and discharge characteristics were analyzed. In case of input pulse signal of 250 Hz, the Memristor-capacitor circuit showed delay time of 0.6ms, rising time of 0.58 ms and falling time of 1.6 ms.

System implementation share of voice and sign language (지화인식 기반의 음성 및 SNS 공유 시스템 구현)

  • Kang, Jung-Hun;Yang, Dea-Sik;Oh, Min-Seok;Sir, Jung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.644-646
    • /
    • 2016
  • Deaf are it is difficult to communicate to represent the voice heard, so theay use mostly using the speech, sign language, writing, etc. to communicate. It is the best way to use sign language, in order to communicate deaf and normal people each other. But they must understand to use sign language. In this paper, we designed and implementated finger language translation system to support communicate between deaf and normal people. We used leap motion as input device that can track finger and hand gesture. We used raspberry pi that is low power sing board computer to process input data and translate finger language. We implemented application used Node.js and MongoDB. The client application complied with HTML5 so that can be support any smart device with web browser.

  • PDF

Design of a pen-shaped input device using the low-cost inertial measurement units (저가격 관성 센서를 이용한 펜 형 입력 장치의 개발)

  • Chang, Wook;Kang, Kyoung-Ho;Choi, Eun-Seok;Bang, Won-Chul;Potanin, Alexy;Kim, Dong-Yoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.247-258
    • /
    • 2003
  • In this paper, we present a pen-shaped input device equipped with accelerometers and gyroscopes that measure inertial movements when a user writes on 2 or 3 dimensional space with the pen. The measurements from gyroscope are integrated once to find the attitude of the system and are used to compensate gravitational effect in the accelerations. Further, the compensated accelerations are integrated twice to yield the position of the system, whose basic concept stems from the field of inertial navigation. However, the accuracy of the position measurement significantly deteriorates with time due to the integrations involved in recovering the handwriting trajectory This problem is common in the inertial navigation system and is usually solved by the periodic or aperiodic calibration of the system with external reference sources or other information in the filed of inertial navigation. In the presented paper, the calibration of the position or velocity is performed on-line and off-line. In the on-line calibration stage, the complementary filter technique is used, where a Kalman filter plays an important role. In the off-line calibration stage, the constant component of the resultant navigational error of the system is removed using the velocity information and motion detection algorithm. The effectiveness and feasibility of the presented system is shown through the experimental results.

Real-Time Haptic Rendering for Tele-operation with Varying Communication Time Delay (가변적인 통신지연시간을 갖는 원격 작업 환경을 위한 실시간 햅틱 렌더링)

  • Lee, K.;Chung, S.Y.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.71-82
    • /
    • 2009
  • This paper presents a real-time haptic rendering method for a realistic force feedback in a remote environment with varying communication time-delay. The remote environment is assumed as a virtual environment based on a computer graphics, for example, on-line shopping mall, internet game and cyber-education. The properties of a virtual object such as stiffness and viscosity are assumed to be unknown because they are changed according to the contact position and/or a penetrated depth into the object. The DARMAX model based output estimator is proposed to trace the correct impedance of the virtual object in real-time. The output estimator is developed on the input-output relationship. It can trace the varying impedance in real-time by virtue of P-matrix resetting algorithm. And the estimator can trace the correct impedance by using a white noise that prevents the biased input-output information. Realistic output forces are generated in real-time, by using the inputs and the estimated impedance, even though the communication time delay and the impedance of the virtual object are unknown and changed. The generated forces trace the analytical forces computed from the virtual model of the remote environment. Performance is demonstrated by experiments with a 1-dof haptic device and a spring-damper-based virtual model.

  • PDF