• 제목/요약/키워드: Computer Convergence

Search Result 5,221, Processing Time 0.031 seconds

Detection of Pig's Posture for Top-View-Camera-based Pig's Weight Estimation (탑뷰 카메라 기반의 돼지 체중 추정을 위한 돼지 자세 결정)

  • Choi, Won-Seok;Ahn, Han-Se;Lee, Han-Hae-Sol;Chung, Yong-Wha;Park, Dai-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.625-628
    • /
    • 2019
  • 양돈 업계에서 돼지의 무게는 생산성 측면에서 매우 중요한 요인 중 하나이다. 탑뷰 카메라를 통해 획득된 이미지에서 돼지의 무게를 추정할 때 오차가 적고 신뢰도 있는 결과를 보이기 위해, 오차의 주요 원인인 돼지의 머리를 제거하여야 한다. 우선, 돼지의 머리를 제거하기 위해서는 귀를 탐지하여야 한다. 그러나 돼지의 자세가 바르지 못한 경우 겹침으로 인해 돼지의 귀와 머리가 구분되지 않는 경우가 발생하고, 귀 탐지 과정에서 고려해야 할 변수가 많아지므로 연산량과 수행 시간이 증가한다. 따라서 돼지의 무게 추정을 위해서 돼지의 머리를 제거할 때 돼지의 자세 판정은 필수적이다. 본 논문에서는 돼지의 중점으로부터 돼지의 경계선을 연결한 선분의 길이를 비교하여 돼지의 자세를 빠르게 결정하였다. 이를 통해 자세가 바른 돼지의 머리를 제거하여 돼지의 무게를 측정하는 방법을 제안한다. 실험 결과, 7.8 ms의 수행 시간과 0.97 이상의 정확도로 돼지머리 제거를 위한 자세를 결정할 수 있음을 확인하였다.

Image Processing for Pig's Head Removal (돼지 머리 제거를 위한 영상 처리)

  • Ahn, Han-Se;Choi, Won-Seok;Lee, Han-Hae-Sol;Chung, Yong-Wha;Park, Dai-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.621-624
    • /
    • 2019
  • 돈사에서 돼지의 무게는 돼지의 건강이나 성장 상태, 출하 여부, 사육 환경, 사료 배급을 결정하는 주요 요인 중 하나이다. 이에 따라 돈사에서 돼지의 무게를 측정하는 것은 중요한 문제이다. 돼지의 무게 측정을 위해 Top-view 카메라에서 획득한 영상으로부터 돼지의 픽셀 수를 정확히 측정하기 위해서는 돼지의 머리 부분을 제거할 필요가 있다. 본 논문에서는 Convex-hull을 이용하여 돼지 모양에서의 오목 점과 돼지의 중심으로부터의 거리 정보를 이용함으로써 돼지의 머리를 효과적으로 탐지 및 제거하는 방법을 제안한다. 먼저, 이진화된 돼지의 이미지에서 Convex-hull 알고리즘을 수행 후, 돼지의 중심점 좌표로부터 일정 굴곡 이상의 오목 점 중 가장 가까운 점의 좌표를 획득한다. 이후 앞서 획득한 점의 좌표와 중점의 좌표 사이 일정 길이와 각도를 가지는 또 다른 점의 좌표를 획득하고, 두 점을 기준으로 돼지의 몸통과 머리를 분리하였다. 실험결과, 높은 정확도와 적은 수행시간으로 돼지의 머리를 탐지하고 제거할 수 있음을 확인하였다.

Separation of Occluding Pigs using Deep Learning-based Image Processing Techniques (딥 러닝 기반의 영상처리 기법을 이용한 겹침 돼지 분리)

  • Lee, Hanhaesol;Sa, Jaewon;Shin, Hyunjun;Chung, Youngwha;Park, Daihee;Kim, Hakjae
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.136-145
    • /
    • 2019
  • The crowded environment of a domestic pig farm is highly vulnerable to the spread of infectious diseases such as foot-and-mouth disease, and studies have been conducted to automatically analyze behavior of pigs in a crowded pig farm through a video surveillance system using a camera. Although it is required to correctly separate occluding pigs for tracking each individual pigs, extracting the boundaries of the occluding pigs fast and accurately is a challenging issue due to the complicated occlusion patterns such as X shape and T shape. In this study, we propose a fast and accurate method to separate occluding pigs not only by exploiting the characteristics (i.e., one of the fast deep learning-based object detectors) of You Only Look Once, YOLO, but also by overcoming the limitation (i.e., the bounding box-based object detector) of YOLO with the test-time data augmentation of rotation. Experimental results with two-pigs occlusion patterns show that the proposed method can provide better accuracy and processing speed than one of the state-of-the-art widely used deep learning-based segmentation techniques such as Mask R-CNN (i.e., the performance improvement over Mask R-CNN was about 11 times, in terms of the accuracy/processing speed performance metrics).

Real-Time Foreground and Facility Extraction with Deep Learning-based Object Detection Results under Static Camera-based Video Monitoring (고정 카메라 기반 비디오 모니터링 환경에서 딥러닝 객체 탐지기 결과를 활용한 실시간 전경 및 시설물 추출)

  • Lee, Nayeon;Son, Seungwook;Yu, Seunghyun;Chung, Yongwha;Park, Daihee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.711-714
    • /
    • 2021
  • 고정 카메라 환경에서 전경과 배경 간 픽셀값의 차를 이용하여 전경을 추출하기 위해서는 정확한 배경 영상이 필요하다. 또한, 프레임마다 변화하는 실제 배경과 맞추기 위해 배경 영상을 지속해서 갱신할 필요가 있다. 본 논문에서는 정확한 배경 영상을 생성하기 위해 실시간 처리가 가능한 딥러닝 기반 객체 탐지기의 결과를 입력받아 영상 처리에 활용함으로써 배경을 생성 및 지속적으로 갱신하고, 획득한 배경 정보를 이용해 전경을 추출하는 방법을 제안한다. 먼저, 고정 카메라에서 획득되는 비디오 데이터에 딥러닝 기반 객체 탐지기를 적용한 박스 단위 객체 탐지 결과를 지속적으로 입력받아 픽셀 단위의 배경 영상을 갱신하고 개선된 배경 영상을 도출한다. 이후, 획득한 배경 영상을 이용하여 더 정확한 전경 영상을 획득한다. 또한, 본 논문에서는 시설물에 가려진 객체를 더 정확히 탐지하기 위해서 전경 영상을 이용하여 시설물 영상을 추출하는 방법을 제안한다. 실제 돈사에 설치된 카메라로 부터 획득된 12시간 분량의 비디오를 이용하여 실험한 결과, 제안 방법을 이용한 전경과 시설물 추출이 효과적임을 확인하였다.

Analysis and Improvement on the College Convergence Education with Game Departments (국내대학 게임학과의 융합교육 현황과 개선방안)

  • Park, Jin-Won;Baek, Hyun-Deok
    • Journal of Engineering Education Research
    • /
    • v.17 no.2
    • /
    • pp.68-74
    • /
    • 2014
  • Game industry demands for talented workers from game scenario writing, graphic design and computer game programming areas, which are the three heterogeneous parts of computer game making. This paper deals with the analysis on the college convergence education, surveying the curriculums of game departments in Korean universities and with how to proceed for game programmers to the direction of convergence education for computer game making. Most of the game departments are focusing on game programming area, whereas only 2 departments among 14 surveyed are teaching the game graphic design topics. Observing the curriculum changes for sampled game departments reveals that around 30% of the majoring classes are directly game related. Game programmers are to be advised to fulfill their programming skill first and later expand their ability to game graphic design skill.

Individual Pig Detection using Fast Region-based Convolution Neural Network (고속 영역기반 컨볼루션 신경망을 이용한 개별 돼지의 탐지)

  • Choi, Jangmin;Lee, Jonguk;Chung, Yongwha;Park, Daihee
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.216-224
    • /
    • 2017
  • Abnormal situation caused by aggressive behavior of pigs adversely affects the growth of pigs, and comes with an economic loss in intensive pigsties. Therefore, IT-based video surveillance system is needed to monitor the abnormal situations in pigsty continuously in order to minimize the economic demage. Recently, some advances have been made in pig monitoring; however, detecting each pig is still challenging problem. In this paper, we propose a new color image-based monitoring system for the detection of the individual pig using a fast region-based convolution neural network with consideration of detecting touching pigs in a crowed pigsty. The experimental results with the color images obtained from a pig farm located in Sejong city illustrate the efficiency of the proposed method.

Generation of High Resolution Elemental Images using Expanded Depth Image (깊이영상 확장을 이용한 고해상도 요소영상 생성)

  • Song, Min-Ho;Lim, Byung-Muk;Jeong, Ji-Seong;Yoo, Kwan-Hee
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.343-344
    • /
    • 2016
  • 최근 3D 기술의 이슈는 안경을 사용하지 않고 고화질 3D를 볼 수 있도록 하는 것이며, 그 기술로 집적영상시스템이 대표적으로 사용된다. 본 논문에서는 고화질의 3D 영상 생성에 대한 기법의 하나로 저해상도의 깊이영상을 고해상도로 확장시켜 고해상도 요소영상을 생성하는 기법을 제안한다. 제안 기법을 적용한 결과 질 좋은 요소 영상을 생성하였다.

  • PDF

Classification of Porcine Wasting Diseases using Deep Learning (딥러닝 기반의 돼지 호흡기 질병 식별)

  • Lee, Jonguk;Cho, Hyun Seok;Park, Daihee;Chung, Yongwha
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.735-737
    • /
    • 2017
  • 본 논문에서는 이유자돈의 건강에 심각한 문제를 발생시키고, 농가의 생산성을 급격하게 저하시키는 돼지 호흡기 질환을 효과적으로 식별하는 시스템을 제안한다. 제안된 시스템은 먼저, 돼지가 내는 소리에서 스펙트로그램 정보를 추출한다. 추출된 정보는 최근 각광을 받고 있는 딥러닝 기법 중 하나인 CNN에 적용되어, 효과적인 특징으로 변환된 후 돼지 호흡기 질환을 탐지 및 식별한다. 세종시에 위치한 돼지농장에서 취득한 실제 소리 데이터 셋을 이용하여 본 논문에서 제안하는 소리 센서 환경에서의 돼지 호흡기 질병 탐지 시스템의 성능을 실험적으로 검증한다.

Development of Convergence Education Program of the 'Life and Electricity·Electron' Unit in Practical Arts Textbook to Enhance Computational Thinking

  • Kim, Myung-Jung;Lee, Tae-Wuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.199-205
    • /
    • 2016
  • In this paper, we propose a analysis of electric and electronic's unit in paratical arts and convergence education program to enhance computational thinking. In the current practical arts curriculum of Korean elementary school 6th graders, the 'information' related chapter is Chapter 3. However, educational contents mainly consist of making activities according to the specified manual such as electrical and electronic products, learning about robots, etc. It is very insufficient to develop the computational thinking required by the software-centered society. Therefore, we are to study development of convergence education program of the 'Life and Electricity Electron' unit in practical arts textbook to enhance computational thinking.

Understanding postal delivery areas in the Republic of Korea using multiple unsupervised learning approaches

  • Han, Keejun;Yu, Yeongwoong;Na, Dong-gil;Jung, Hoon;Heo, Younggyo;Jeong, Hyeoncheol;Yun, Sunguk;Kim, Jungeun
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.232-243
    • /
    • 2022
  • Changes in household composition and the residential environment have had a considerable impact on the features of postal delivery regions in recent years, resulting in a large increase in the overall workload of domestic postal delivery services. In this paper, we provide complex analysis results for postal delivery areas using various unsupervised learning approaches. First, we extract highly influential features using several feature-engineering methods. Then, using quantitative and qualitative cluster analyses, we find the distinctive traits and semantics of postal delivery zones. Unsupervised learning approaches are useful for successfully grouping postal service zones, according to our findings. Furthermore, by comparing a postal delivery region to other areas in the same group, workload balancing was achieved.