• 제목/요약/키워드: Computer Algorithms

검색결과 3,829건 처리시간 0.026초

Design and optimization of steel trusses using genetic algorithms, parallel computing, and human-computer interaction

  • Agarwal, Pranab;Raich, Anne M.
    • Structural Engineering and Mechanics
    • /
    • 제23권4호
    • /
    • pp.325-337
    • /
    • 2006
  • A hybrid structural design and optimization methodology that combines the strengths of genetic algorithms, local search techniques, and parallel computing is developed to evolve optimal truss systems in this research effort. The primary objective that is met in evolving near-optimal or optimal structural systems using this approach is the capability of satisfying user-defined design criteria while minimizing the computational time required. The application of genetic algorithms to the design and optimization of truss systems supports conceptual design by facilitating the exploration of new design alternatives. In addition, final shape optimization of the evolved designs is supported through the refinement of member sizes using local search techniques for further improvement. The use of the hybrid approach, therefore, enhances the overall process of structural design. Parallel computing is implemented to reduce the total computation time required to obtain near-optimal designs. The support of human-computer interaction during layout optimization and local optimization is also discussed since it assists in evolving optimal truss systems that better satisfy a user's design requirements and design preferences.

Feature Selection Algorithms in Intrusion Detection System: A Survey

  • MAZA, Sofiane;TOUAHRIA, Mohamed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권10호
    • /
    • pp.5079-5099
    • /
    • 2018
  • Regarding to the huge number of connections and the large flow of data on the Internet, Intrusion Detection System (IDS) has a difficulty to detect attacks. Moreover, irrelevant and redundant features influence on the quality of IDS precisely on the detection rate and processing cost. Feature Selection (FS) is the important technique, which gives the issue for enhancing the performance of detection. There are different works have been proposed, but a map for understanding and constructing a state of the FS in IDS is still need more investigation. In this paper, we introduce a survey of feature selection algorithms for intrusion detection system. We describe the well-known approaches that have been proposed in FS for IDS. Furthermore, we provide a classification with a comparative study between different contribution according to their techniques and results. We identify a new taxonomy for future trends and existing challenges.

Effect of Changing the Basis in Genetic Algorithms Using Binary Encoding

  • Kim, Yong-Hyuk;Yoon, You-Rim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제2권4호
    • /
    • pp.184-193
    • /
    • 2008
  • We examine the performance of genetic algorithms using binary encoding, with respect to a change of basis. Changing the basis can result in a change in the linkage structure inherent in the fitness function. We test three simple functions with differing linkage strengths and analyze the results. Based on an empirical analysis, we show that a better basis results in a smoother fitness landscape, hence genetic algorithms based on the new encoding method provide better performance.

최적화 알고리듬들의 객체지향 C++ 라이브러리의 개발 (Development of Object-Oriented C++ Library of Optimization Algorithms)

  • 현창헌;최영일
    • 산업기술연구
    • /
    • 제20권B호
    • /
    • pp.115-123
    • /
    • 2000
  • There are many optimal design packages, but they are big ones and they have only a few kinds of optimal algorithm coded with Fortran and it is sometimes necessary for user to write down some codes into their packages. So it is hard for user to learn how to use and customize them. More over, there are no commercial home-made software for optimum design. So, in this paper, several famous optimum algorithms are coded and modulized with C++ which is known as a suitable computer language in order to build up more algorithms into one computer software. All algorithms developed with C++ here were tested for comparison with optimization tool box of MATLAB and are superior to MATLAB.

  • PDF

An Overview of Unsupervised and Semi-Supervised Fuzzy Kernel Clustering

  • Frigui, Hichem;Bchir, Ouiem;Baili, Naouel
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권4호
    • /
    • pp.254-268
    • /
    • 2013
  • For real-world clustering tasks, the input data is typically not easily separable due to the highly complex data structure or when clusters vary in size, density and shape. Kernel-based clustering has proven to be an effective approach to partition such data. In this paper, we provide an overview of several fuzzy kernel clustering algorithms. We focus on methods that optimize an fuzzy C-mean-type objective function. We highlight the advantages and disadvantages of each method. In addition to the completely unsupervised algorithms, we also provide an overview of some semi-supervised fuzzy kernel clustering algorithms. These algorithms use partial supervision information to guide the optimization process and avoid local minima. We also provide an overview of the different approaches that have been used to extend kernel clustering to handle very large data sets.

Power System Oscillations Damping Using UPFC Based on an Improved PSO and Genetic Algorithm

  • Babaei, Ebrahim;Bolhasan, Amin Mokari;Sadeghi, Meisam;Khani, Saeid
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권1호
    • /
    • pp.135-142
    • /
    • 2012
  • In this paper, optimal selection of the unified power flow controller (UPFC) damping controller parameters in order to improve the power system dynamic response and its stability based on two modified intelligent algorithms have been proposed. These algorithms are based on a modified intelligent particle swarm optimization (PSO) and continuous genetic algorithm (GA). After extraction of UPFC dynamic model, intelligent PSO and genetic algorithms are used to select the effective feedback signal of the damping controller; then, to compare the performance of the proposed UPFC controller in damping the critical modes of a single-machine infinite-bus (SMIB) power system, the simulation results are presented. The comparison shows the good performance of both presented PSO and genetic algorithms in an optimal selection of UPFC damping controller parameters and damping oscillations.

반도체 칩의 높이 측정을 위한 스테레오 비전의 측정값 조정 알고리즘 (Adjustment Algorithms for the Measured Data of Stereo Vision Methods for Measuring the Height of Semiconductor Chips)

  • 김영두;조태훈
    • 반도체디스플레이기술학회지
    • /
    • 제10권2호
    • /
    • pp.97-102
    • /
    • 2011
  • Lots of 2D vision algorithms have been applied for inspection. However, these 2D vision algorithms have limitation in inspection applications which require 3D information data such as the height of semiconductor chips. Stereo vision is a well known method to measure the distance from the camera to the object to be measured. But it is difficult to apply for inspection directly because of its measurement error. In this paper, we propose two adjustment methods to reduce the error of the measured height data for stereo vision. The weight value based model is used to minimize the mean squared error. The average value based model is used with simple concept to reduce the measured error. The effect of these algorithms has been proved through the experiments which measure the height of semiconductor chips.

ModifiedFAST: A New Optimal Feature Subset Selection Algorithm

  • Nagpal, Arpita;Gaur, Deepti
    • Journal of information and communication convergence engineering
    • /
    • 제13권2호
    • /
    • pp.113-122
    • /
    • 2015
  • Feature subset selection is as a pre-processing step in learning algorithms. In this paper, we propose an efficient algorithm, ModifiedFAST, for feature subset selection. This algorithm is suitable for text datasets, and uses the concept of information gain to remove irrelevant and redundant features. A new optimal value of the threshold for symmetric uncertainty, used to identify relevant features, is found. The thresholds used by previous feature selection algorithms such as FAST, Relief, and CFS were not optimal. It has been proven that the threshold value greatly affects the percentage of selected features and the classification accuracy. A new performance unified metric that combines accuracy and the number of features selected has been proposed and applied in the proposed algorithm. It was experimentally shown that the percentage of selected features obtained by the proposed algorithm was lower than that obtained using existing algorithms in most of the datasets. The effectiveness of our algorithm on the optimal threshold was statistically validated with other algorithms.

Accuracy Enhancement of Parameter Estimation and Sensorless Algorithms Based on Current Shaping

  • Kim, Jin-Woong;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2016
  • Dead time is typically incorporated in voltage source inverter systems to prevent short circuit cases. However, dead time causes an error between the output voltage and reference voltage. Hence, voltage equation-based algorithms, such as motor parameter estimation and back electromotive force (EMF)-based sensorless algorithms, are prone to estimation errors. Several dead-time compensation methods have been developed to reduce output voltage errors. However, voltage errors are still common in zero current crossing areas, and an effect of the error is much worse in a low speed region. Therefore, employing voltage equation-based algorithms in low speed regions is difficult. This study analyzes the conventional dead-time compensation method and output voltage errors in low speed operation areas. A current shaping method that can reduce output voltage errors is also proposed. Experimental results prove that the proposed method reduces voltage errors and improves the accuracy of the parameter estimation method and the performance of the back EMF-based sensorless algorithm.

LCD 결함 검출을 위한 머신 비전 알고리즘 연구 (Study on Machine Vision Algorithms for LCD Defects Detection)

  • 정민철
    • 반도체디스플레이기술학회지
    • /
    • 제9권3호
    • /
    • pp.59-63
    • /
    • 2010
  • This paper proposes computer visual inspection algorithms for various LCD defects which are found in a manufacturing process. Modular vision processing steps are required in order to detect different types of LCD defects. Those key modules include RGB filtering for pixel defects, gray-scale morphological processing and Hough transform for line defects, and adaptive threshold for spot defects. The proposed algorithms can give users detailed information on the type of defects in the LCD panel, the size of defect, and its location. The machine vision inspection system is implemented using C language in an embedded Linux system for a high-speed real-time image processing. Experiment results show that the proposed algorithms are quite successful.