• Title/Summary/Keyword: Computed tomography, CT

Search Result 2,638, Processing Time 0.031 seconds

Evaluation of the Positional Uncertainty of a Liver Tumor using 4-Dimensional Computed Tomography and Gated Orthogonal Kilovolt Setup Images (사차원전산화단층촬영과 호흡연동 직각 Kilovolt 준비 영상을 이용한 간 종양의 움직임 분석)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Park, Hee-Chul;Ahn, Jong-Ho;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jin-Sung;Han, Young-Yih;Lim, Do-Hoon;Choi, Doo-Ho
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.155-165
    • /
    • 2010
  • Purpose: In order to evaluate the positional uncertainty of internal organs during radiation therapy for treatment of liver cancer, we measured differences in inter- and intra-fractional variation of the tumor position and tidal amplitude using 4-dimentional computed radiograph (DCT) images and gated orthogonal setup kilovolt (KV) images taken on every treatment using the on board imaging (OBI) and real time position management (RPM) system. Materials and Methods: Twenty consecutive patients who underwent 3-dimensional (3D) conformal radiation therapy for treatment of liver cancer participated in this study. All patients received a 4DCT simulation with an RT16 scanner and an RPM system. Lipiodol, which was updated near the target volume after transarterial chemoembolization or diaphragm was chosen as a surrogate for the evaluation of the position difference of internal organs. Two reference orthogonal (anterior and lateral) digital reconstructed radiograph (DRR) images were generated using CT image sets of 0% and 50% into the respiratory phases. The maximum tidal amplitude of the surrogate was measured from 3D conformal treatment planning. After setting the patient up with laser markings on the skin, orthogonal gated setup images at 50% into the respiratory phase were acquired at each treatment session with OBI and registered on reference DRR images by setting each beam center. Online inter-fractional variation was determined with the surrogate. After adjusting the patient setup error, orthogonal setup images at 0% and 50% into the respiratory phases were obtained and tidal amplitude of the surrogate was measured. Measured tidal amplitude was compared with data from 4DCT. For evaluation of intra-fractional variation, an orthogonal gated setup image at 50% into the respiratory phase was promptly acquired after treatment and compared with the same image taken just before treatment. In addition, a statistical analysis for the quantitative evaluation was performed. Results: Medians of inter-fractional variation for twenty patients were 0.00 cm (range, -0.50 to 0.90 cm), 0.00 cm (range, -2.40 to 1.60 cm), and 0.00 cm (range, -1.10 to 0.50 cm) in the X (transaxial), Y (superior-inferior), and Z (anterior-posterior) directions, respectively. Significant inter-fractional variations over 0.5 cm were observed in four patients. Min addition, the median tidal amplitude differences between 4DCTs and the gated orthogonal setup images were -0.05 cm (range, -0.83 to 0.60 cm), -0.15 cm (range, -2.58 to 1.18 cm), and -0.02 cm (range, -1.37 to 0.59 cm) in the X, Y, and Z directions, respectively. Large differences of over 1 cm were detected in 3 patients in the Y direction, while differences of more than 0.5 but less than 1 cm were observed in 5 patients in Y and Z directions. Median intra-fractional variation was 0.00 cm (range, -0.30 to 0.40 cm), -0.03 cm (range, -1.14 to 0.50 cm), 0.05 cm (range, -0.30 to 0.50 cm) in the X, Y, and Z directions, respectively. Significant intra-fractional variation of over 1 cm was observed in 2 patients in Y direction. Conclusion: Gated setup images provided a clear image quality for the detection of organ motion without a motion artifact. Significant intra- and inter-fractional variation and tidal amplitude differences between 4DCT and gated setup images were detected in some patients during the radiation treatment period, and therefore, should be considered when setting up the target margin. Monitoring of positional uncertainty and its adaptive feedback system can enhance the accuracy of treatments.

The evaluation of the feasibility about prostate SBRT by analyzing interfraction errors of internal organs (분할치료간(Interfraction) 내부 장기 움직임 오류 분석을 통한 전립선암의 전신정위적방사선치료(SBRT) 가능성 평가)

  • Hong, soon gi;Son, sang joon;Moon, joon gi;Kim, bo kyum;Lee, je hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.179-186
    • /
    • 2016
  • Purpose : To figure out if the treatment plan for rectum, bladder and prostate that have a lot of interfraction errors satisfies dosimetric limits without adaptive plan by analyzing MR image. Materials and Methods : This study was based on 5 prostate cancer patients who had IMRT(total dose: 70Gy) Using ViewRay MRIdian System(ViewRay, ViewRay Inc., Cleveland, OH, USA) The treatment plans were made on the same CT images to compare with the plan quality according to adaptive plan, and the Eclipse(Ver 10.0.42, Varian, USA) was used. After registrate the 5 treatment MR images to the CT images for treatment plan to analyze the interfraction changes of organ, we measured the dose volume histogram and the changes of the absolute volume for each organ by appling the first treatment plan to each image. Over 5 fractions, the total dose for PTV was $V_{36.25}$ Gy $${\geq_-}$$ 95%. To confirm that the prescription dose satisfies the SBRT dose limit for prostate, we measured $V_{100%}$, $V_{95%}$, $V_{90%}$ for CTV and $V_{100%}$, $V_{90%}$, $V_{80%}$ $V_{50%}$ of rectum and bladder. Results : All dose average value of CTV, rectum and bladder satisfied dose limit, but there was a case that exceeded dose limit more than one after analyzing the each image of treatment. After measuring the changes of absolute volume comparing the MR image of the first treatment plan with the one of the interfraction treatment, the difference values were maximum 1.72 times at rectum and maximum 2.0 times at bladder. In case of rectum, the expected values were planned under the dose limit, on average, $V_{100%}=0.32%$, $V_{90%}=3.33%$, $V_{80%}=7.71%$, $V_{50%}=23.55%$ in the first treatment plan. In case of rectum, the average of absolute volume in first plan was 117.9 cc. However, the average of really treated volume was 79.2 cc. In case of CTV, the 100% prescription dose area didn't satisfy even though the margin for PTV was 5 mm because of the variation of rectal and bladder volume. Conclusion : There was no case that the value from average of five fractions is over the dosimetric limits. However, dosimetric errors of rectum and bladder in each fraction was significant. Therefore, the precise delivery is needed in case of prostate SBRT. The real-time tracking and adaptive plan is necessary to meet the precision delivery.

  • PDF

Diagnostic Approach to the Solitary Pulmonary Nodule : Reappraisal of the Traditional Clinical Parameters for Differentiating Malignant Nodule from Benign Nodule (고립성 폐결절에 대한 진단적 접근 : 악성결절과 양성결절의 감별 지표에 대한 재검토)

  • Kho, Won Jung;Kim, Cheol Hyeon;Jang, Seung Hun;Lee, Jae Ho;Yoo, Chul Gyu;Chung, Hee Soon;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.4
    • /
    • pp.500-518
    • /
    • 1996
  • Background : The solitary pulmonary nodule(SPN) presents a diagnostic dilemma to the physician and the patient. Many clinical characteristics(i.e. age, smoking history, prior history of malignancy) and radiological characteristics( i.e. size, calcification, growth rate, several findings of computed tomography) have been proposed to help to determine whether the SPN was benign or malignant. However, most of these diagnostic guidelines are based on the data collected before computed tomography(CT) has been introduced and lung cancer was not as common as these days. Moreover, it is not well established whether these guidelines from western populations could be applicable to Korean patients. Methods : We had a retrospective analysis of the case records and radiographic findings in 114 patients presenting with SPN from Jan. 1994 to Feb. 1995 in Seoul National University Hospital, a tertiary referral hospital. Results : We observed the following results ; (1) Out of 113 SPNs, the etiology was documented in 94 SP IS. There were 34 benign SP s and 60 malignant SPNs. Among which, 49 SPNs were primary lung cancers and the most common hi stologic type was adenocarcinoma. (2) The average age of patients with benign and malignant SPNs was $49.7{\pm}12.0$ and $58.1{\pm}10.0$ years, respectively( p=0.0004), and the malignant SPNs had a striking linear propensity to increase with age. (3) No significant difference in the hi story of smoking was noted between the patients with benign SPNs($13.0{\pm}17.6$ pack- year) and those with malignant SPNs($18.6{\pm}25.1$ pack-year) (p=0.2108). (4) 9 out of 10 patients with prior history of malignancy had malignant SPNs. 5 were new primary lung cancers with no relation to prior malignancy. (5) The average size of benign SPNs($3.01{\pm}1.20cm$) and malignant SPNs($2.98{\pm}0.97cm$) was not significantly different(p=0.8937). (6) The volume doubling time could be calculated in 22 SPNs. 9 SPNs had the volume doubling time longer than 400 days. Out of these, 6 were malignant SPNs. (7) The CT findings suggesting malignancy included the lobulated or spiculated border, air- bronchogram, pleural tail, and lymphadenopathy. In contrast, calcification, central low attenuation, cavity with even thickness, well-marginated border, and peri nodular micronodules were more suggestive for benign nodule. (8) The diagnostic yield of percutaneous needle aspiration and biopsy was 57.6%(19/33) of benign SPNs and 81.0%(47/58) of malignant SPNs. The diagnostic value of sputum analysis and bronchoscopic evaluations were relatively very low. (9) 42.3%(11/26) of SPNs of undetermined etiology preoperatively turned out to be malignant after surgical resection. Overall, 75.4%(46/61) of surgically resected SPNs were malignant. Conclusions : We conclude that the likelihood of malignant SPN correlates the age of patient, prior history of malignancy, some CT findings including lobulated or spiculated border, air-bronchogram, pleural tail and lymphadenopathy. However, the history of smoking, the size of the nodule, and the volume doubling time are not helpful to determent whether the SPN is benign or malignant, which have been regarded as valuable clinical parameters previously. We suggest that aggressive diagnostic approach including surgical resection is necessary in patient with SPNs.

  • PDF

Comparison of Helical TomoTherapy with Linear Accelerator Base Intensity-modulated Radiotherapy for Head & Neck Cases (두경부암 환자에 대한 선량체적 히스토그램에 따른 토모치료외 선형가속기기반 세기변조방사선치료의 정량적 비교)

  • Kim, Dong-Wook;Yoon, Myong-Geun;Park, Sung-Yong;Lee, Se-Byeong;Shin, Dong-Ho;Lee, Doo-Hyeon;Kwak, Jung-Won;Park, So-Ah;Lim, Young-Kyung;Kim, Jin-Sung;Shin, Jung-Wook;Cho, Kwan-Ho
    • Progress in Medical Physics
    • /
    • v.19 no.2
    • /
    • pp.89-94
    • /
    • 2008
  • TomoTherapy has a merit to treat cancer with Intensity modulated radiation and combines precise 3-D imaging from computerized tomography (CT scanning) with highly targeted radiation beams and rotating beamlets. In this paper, we comparing the dose distribution between TomoTherapy and linear accelerator based intensity modulated radiotherapy (IMRT) for 10 Head & Neck patients using TomoTherapy which is newly installed and operated at National Cancer Center since Sept. 2006. Furthermore, we estimate how the homogeneity and Normal Tissue Complication Probability (NTCP) are changed by motion of target. Inverse planning was carried out using CadPlan planning system (CadPlan R.6.4.7, Varian Medical System Inc. 3100 Hansen Way, Palo Alto, CA 94304-1129, USA). For each patient, an inverse IMRT plan was also made using TomoTherapy Hi-Art System (Hi-Art2_2_4 2.2.4.15, TomoTherapy Incorporated, 1240 Deming Way, Madson, WI 53717-1954, USA) and using the same targets and optimization goals. All TomoTherapy plans compared favorably with the IMRT plans regarding sparing of the organs at risk and keeping an equivalent target dose homogeneity. Our results suggest that TomoTherapy is able to reduce the normal tissue complication probability (NTCP) further, keeping a similar target dose homogeneity.

  • PDF

Current Status and Future Perspective of PET (PET 이용 현황 및 전망)

  • Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Positron Emission Tomography (PET) is a nuclear medicine imaging modality that consists of systemic administration to a subject of a radiopharmaceutical labeled with a positron-emitting radionuclide. Following administration, its distribution in the organ or structure under study can be assessed as a function of time and space by (1) defecting the annihilation radiation resulting from the interaction of the positrons with matter, and (2) reconstructing the distribution of the radioactivity from a series of that used in computed tomography (CT). The nuclides most generally exhibit chemical properties that render them particularly desirable in physiological studies. The radionuclides most widely used in PET are F-18, C-11, O-15 and N-13. Regarding to the number of the current PET Centers worldwide (based on ICP data), more than 300 PET Centers were in operation in 2000. The use of PET technology grew rapidly compared to that in 1992 and 1996, particularly in the USA, which demonstrates a three-fold rise in PET installations. In 2001, 194 PET Centers were operating in the USA. In 1994, two clinical and research-oriented PET Centers at Seoul National University Hospital and Samsung Medical Center, was established as the first dedicated PET and Cyclotron machines in Korea, followed by two more PET facilities at the Korea Cancer Center Hospital, Ajou Medical Center, Yonsei University Medical Center, National Cancer Center and established their PET Center. Catholic Medical School and Pusan National University Hospital have finalized a plan to install PET machine in 2002, which results in total of nine PET Centers in Korea. Considering annual trends of PET application in four major PET centers in Korea in Asan Medical Center recent six years (from 1995 to 2000), a total of 11,564 patients have been studied every year and the number of PET studies has shown steep growth year upon year. We had 1,020 PET patients in 1995. This number increased to 1,196, 1,756, 2,379, 3,015 and 4,414 in 1996,1997,1998,1999 and 2000, respectively. The application in cardiac disorders is minimal, and among various neuropsychiatric diseases, patients with epilepsy or dementia can benefit from PET studios. Recently, we investigated brain mapping and neuroreceptor works. PET is not a key application for evaluation of the cardiac patients in Korea because of the relatively low incidence of cardiac disease and less costly procedures such as SPECT can now be performed. The changes in the application of PET studios indicate that, initially, brain PET occupied almost 60% in 1995, followed by a gradual decrease in brain application. However, overall PET use in the diagnosis and management of patients with cancer was up to 63% in 2000. The current medicare coverage policy in the USA is very important because reimbursement policy is critical for the promotion of PET. In May 1995, the Health Care Financing Administration (HCFA) began covering the PET perfusion study using Rubidium-82, evaluation of a solitary pulmonary nodule and pathologically proven non-small cell lung cancer. As of July 1999, Medicare's coverage policy expanded to include additional indications: evaluation of recurrent colorectal cancer with a rising CEA level, staging of lymphoma and detection of recurrent or metastatic melanoma. In December of 2001, National Coverage decided to expand Medicare reimbursement for broad use in 6 cancers: lung, colorecctal, lymphoma, melanoma, head and neck, and esophageal cancers; for determining revascularization in heart diseases; and for identifying epilepsy patients. In addition, PET coverage is expected to further expand to diseases affecting women, such as breast, ovarian, uterine and vaginal cancers as well as diseases like prostate cancer and Alzheimer's disease.

Intensity Modulated Whole Pelvic Radiotherapy in Patients with Cervix Cancer: Analysis of Acute Toxicity (자궁경부암 환자에서 전골반 강도변조방사선치료에 의한 급성부작용)

  • Choi, Young-Min;Lee, Hyung-Sik;Hur, Won-Joo;Cha, Moon-Seok;Kim, Hyun-Ho
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.248-254
    • /
    • 2006
  • $\underline{Purpose}$: To evaluate acute toxicities in cervix cancer patients receiving intensity modulated whole pelvic radiation therapy (IM-WPRT). $\underline{Materials\;and\;Methods}$: Between August 2004 and April 2006, 17 patients who underwent IM-WPRT were analysed. An intravenous contrast agent was used for radiotherapy planning computed tomography (CT). The central clinical target volume (CTV) included the primary tumor, uterus, vagina, and parametrium. The nodal CTV was defined as the lymph nodes larger than 1 cm seen on CT and the contrased-enhanced pelvic vessels. The planning target volume (PTV) was the 1-cm expanded volume around the central CTV, except for a 5-mm expansion from the posterior vagina, and the nodal PTV was defined as the nodal CTV plus a 1.5 cm margin. IM-WPRT was prescribed to deliver a dose of 50 Gy to more than 95% of the PTV. Acute toxicity was assessed with common toxicity criteria up to 60 days after radiotherapy. $\underline{Results}$: Grade 1 nausea developed in 10 (58.9%) patients, and grade 1 and 2 diarrhea developed in 11 (64.7%) and 1 (5.9%) patients, respectively. No grade 3 or higher gastrointestinal toxicity was seen. Leukopenia, anemia, and thrombocytopenia occurred in 15 (88.2%). 7 (41.2%), and 2 (11.8%) patients, respectively, as hematologic toxicities. Grade 3 leukopenia developed in 2 patients who were treated with concurrent chemoradiotherapy. $\underline{Conclusion}$: IM-WPRT can be a useful treatment for cervix cancer patients with decreased severe acute toxicities and a resultant improved compliance to whole pelvic irradiation.

Experiences of the First 130 Patients in Gangnam Severance Hospital (강남세브란스병원 토모테라피를 이용한 치료환자의 130예 통계분석 및 경험)

  • Ha, Jin-Sook;Jeon, Mi-Jin;Kim, Sei-Joon;Kim, Jong-Dae;Shin, Dong-Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.1
    • /
    • pp.45-53
    • /
    • 2008
  • Purpose: We are trying to analyze 130 patients' conditions by using our Helical Tomotherapy, which was installed in our center in Oct. 2007. We will be statistically approach this examination and analyze so that we will be able to figure out adaptive plans according to the change in place of the tumor, GTV (gross tumor volume), total amount of time it took, vector (${\upsilon}=\surd$x2+y2+z2) and the change in size of the tumor. Materials and Methods: Objectives were the patients who were medicated with Tomotherapy in our medical center since Oct. 2007 August 2008. The Average age of the patients were 53 years old (Minimum 25 years old, Maximum 83 years old). The parts of the body we operated were could be categorized as Head&neck (n=22), Chest (n=47), Abdomen (n=25), Pelvis (n=11), Bone (n=25). MVCT had acted on 2702 times, and also had acted on our adaptive plan toward patients who showed big difference in the size of tumor. Also, after equalizing our gained MVCT and kv-CT we checked up on the range of possible mistake, using x, y, z, roll and vector. We've also investigated on Set-up, MVCT, average time of operation and target volume. Results: Mean time on table was 22.8 minutes. Mean treatment time was 13.26 minutes. Mean correction (mm) was X=-0.7, Y=-1.4, Z=5.77, roll=0.29, vector=8.66 Head&neck patients had 2.96 mm less vector value in movement than patients of Chest, Abdomen, Bone. In increasing order, Head&neck, Bone, Abdomen, Chest, Pelvis showed the vector value in movement. Also, there were 27 patients for adaptive plan, 39 patients, who had long or multiple tumor. We could know that When medical treatment is one cure plan, it takes 32 minutes, and when medical treatment is two cure plan, it takes 40 minutes that one medical treatment takes 21 minutes, and the other medical treatment takes 19 minutes. Conclusion:With our basic tools, we could bring more accurate IMRT with MVCT. Also, through our daily image, we checked up on the change in tumor so that adaptive plan could work. It was made it possible to take the cure of long or multiple tumor, the cure in a nearby OAR, and the complicated cure that should make changes of gradient dose distribution.

  • PDF

Dose Evaluation of Dental Artifacts Using MVCT in Head and Neck (두경부암 환자의 MVCT를 이용한 치아 인공물 보정에 따른 선량평가)

  • Shin, Chung Hun;Yun, In Ha;Jeon, Su Dong;Kim, Jeong Mi;Kim, Ho Jin;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.2
    • /
    • pp.25-31
    • /
    • 2019
  • Purpose: Metals induce metal artifact during CT-image for therapy planning, and it occurs images distortion, which affects the volumetric measurement and radiation calculation. In the case of using megavoltage computed tomography(MVCT), the volume of metals can be measured as similar to true volume due to minimal metal artifact outcome. In this study, radiation assessment was conducted by comparing teeth volume from images of kVCT and MVCT of head and neck cancer patients, then assigning to kVCT image to calculate radiation after obtaining the similar volume of true teeth volume from MVCT. Also, formal IR image was able to verify the accuracy of radiation calculation. Material and method: 5 head and neck cancer patients who had intensity-modulated radiation therapy from Radixact® Series were of the subject in this study. Calculations of radiation when constraining true teeth volume out of kVCT image(A-CT) and when designated specific HU after teeth assigned using MVCT image were compared with formal IR image. Treatment planning was devised at the same constraints and mean dose was measured at the radiation assess points. The points were anterior of the teeth, between PTV and the teeth, the interior of PTV near the teeth, and the teeth where 5cm distance from PTV. Result: A difference of metals volume from kVCT and MVCT image was mean 3.49±2.61cc, maximum 7.43cc. PTV was limited to where the internal teeth were fully contained. The results of PTV dose evaluation showed that the average CI value of the kVCT treatment planning without the artifact correction was 0.86, and the average CI value of the kVCT with the artifact correction using MVCT image was 0.9. Conclusion: When the Treatment Planning was made without correction of metal artifacts, the dose of PTV was underestimated, indicating that dose uncertainty occurred. When the computerized treatment plan was made without correction of metal artifacts, the dose of PTV was underestimated, indicating that dose uncertainty occurred.

CT Measurement of Diameter and Dimension of the Trachea in Normal Korean Adults (흥부 전산화단층촬영을 이용한 한국성인의 기관내경과 단면적의 측정)

  • Han, Jae-Youl;Kim, Kwang-Ho;Lee, Gun;Kim, Hyung-Jin;Cho, Soon-Koo;Sun, Kyung
    • Journal of Chest Surgery
    • /
    • v.34 no.7
    • /
    • pp.534-538
    • /
    • 2001
  • Background: Knowledge of size and morphology of the normal trachea is important for airway management and tracheal reconstruction. Conventional radiography is a simple method used to measure the tracheal diameter, but it is not accurate because of the artifacts related to image magnification and overlapping by the shoulder. The purpose of this study was to provide the normal values of the tracheal size and anatomy in Korean adults using Computerized Topography. Material and Method: There were 43 men and 34 women included in this study. They were divided into three age groups(group 1, 20-39 years ; group 2, 40-59 yeas , groups 3, $\geq$60 years). The anteroposterior and transverse diameters and cross - sectional areas of the trachea were measured at the level of the thoracic inlet(Level 1) and the aortic arch(Level 2). These values obtained at each level were compared between age groups and sexes. Result: In 43 men, the anteroposterior / transverse diameters(mean SD in millimeters) of the trachea at levels 1 and 2 were 19.95$\pm$2.99 / 17.72$\pm$2.13 and 19.77$\pm$2.57 / 18.02$\pm$2.19, respectively. In 34 women, those values at levels 1 and 2 were 15.56$\pm$2.12 / 14.18$\pm$2.07 and 15.35$\pm$1.82 / 15.00$\pm$1.60, respectively. At both levels, the anteroposterior and transverse diameters were significantly greater in men than in women (p<0.05). The cross-sectional area of the trachea at levels 1 and 2 were 279.14$\pm$61.37 / 281.93$\pm$63.97 $\textrm{mm}^2$ in men and 173.29$\pm$35.81 / 181.88$\pm$34.74 in women, respectively. They also showed significantly greater values in men than in women(P<0.05). There was no significant difference in diameters and cross-sectional areas of the trachea between age groups. Conclusion: There are significant differences in the internal diameter and cross- sectional area of the trachea between men and women in normal Korean adults, while the age difference was insignificant. We believed CT is a relatively accurate and safe way to measure the internal diameter and cross-sectional areas of the trachea.

  • PDF

Incidence of Malignancy and Its Predictive Factors in Intrapulmonary Nodules Associated with cT1-2N0M0 Non Small Cell Lung Cancer (임상적 병기 T1-2N0M0인 비소세포폐암에 동반된 폐결절의 악성여부 및 그 예측인자)

  • Yoon, Ho Il;Yim, Jae-Jun;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.2
    • /
    • pp.151-158
    • /
    • 2004
  • Background : When a non small cell lung caner patient at the $_cT_{1-2}N_0M_0$ stage is diagnosed with intrapulmonary nodule(s), the treatment plan and prognosis of the patient largely depend on whether the nodule is benign or malignant. In most cases, however, it is hard to conduct a biopsy on such a nodule, due to its small size. Furthermore, the predictive factors that may imply benignancy or malignancy of the nodules remain unknown. As such, the purpose of our study was to validate the incidence of malignant nodules in such cases, and find if there are any predictive factors. Methods : Chest computed tomography(CT) scans and the medical records of 444 patients, who had undergone non small cell lung cancer surgery, between July, 2001 and September, 2003, at Seoul National University Hospital, were retrospectively reviewed. Among $_cT_{1-2}N_0M_0$ non small cell lung cancer patients, with intrapulmonary nodule(s), only those cases where a CT scan or a biopsy of the nodules had been conducted, and had been followed up at intervals of more than 6 months were included. However, patients who had received chemotherapy or radiation therapy, pre- or post-operatively, or with calcified nodules, were excluded. Results : Our study group consisted of 39 patients, divided into two groups. The first group, 33 patients, had benign nodules, and the second group, 6 patients, had malignant nodules. The two groups were compared with regard to gender, age, cell type, pathologic stage, shape, size, location and number of nodules and presence of calcification around the nodules. There was no statistically significant difference between the two groups. Conclusion : The intrapulmonary nodules in non small cell lung cancer patients at the $_cT_{1-2}N_0M_0$ stage were mostly benign. Therefore, surgical treatment for such patients can be considered. Moreover, without predictive factors, pathological confirmation of the diagnosed nodules should be sought in all patients.