• Title/Summary/Keyword: Computed tomography(CT), quantitative

Search Result 153, Processing Time 0.033 seconds

Accuracy verification of dental cone-beam computed tomography of mandibular incisor root canals and assessment of its morphology and aging-related changes

  • Katsuyuki Aoki;Masamitsu Serikawa;Takuya Harada;Akinobu Usami
    • Anatomy and Cell Biology
    • /
    • v.56 no.2
    • /
    • pp.185-190
    • /
    • 2023
  • The root canal morphology undergoes aging-related changes, and relevant quantitative analyses have not yet been reported. We compared the cone beam computed tomography (CBCT) and micro-computed tomography (microCT) scans of extracted mandibular incisors to check the accuracy of morphological measurements. Thereafter, the root canal morphology and aging-related changes in the mandibular incisors of Japanese individuals were assessed using CBCT. Six extracted teeth were fixed in a phantom head and imaged using CBCT and micro-CT. The correlation between the findings of the two imaging modalities was examined. Further, CBCT reconstructed images of the mandibular incisors of 81 individuals were observed. Age-related changes of the root canals were compared between participants aged <30 years and those aged ≥30 years. The CBCT and micro-CT findings regarding the root canals of the extracted teeth coincided in 94.4% of the cases. Mandibular incisors exhibiting two root canals in either cross-section accounted for 9.9% of central incisors and 12.4% of lateral incisors. Mandibular central incisors with two root canals were observed in two (6.3%) individuals aged <30 years and six (12.2%) aged ≥30 years. Mandibular lateral incisors with two root canals were observed in one (3.1%) individual aged <30 years and nine (18.4%) aged ≥30 years. CBCT allows accurate evaluation of complex root canal morphologies and is useful for endodontic preoperative assessment. Mandibular incisors have more frequent occurrence of two root canals with aging.

Measurement Method of the Masseter Muscle Volume Using 3D Computed Tomography (3D CT를 이용한 교근의 부피측정)

  • Baek, Jung Hwan;Choi, Jong Woo;Yoo, Sun Kuk;Kim, Yong Oock;Park, Beyoung Yun
    • Archives of Plastic Surgery
    • /
    • v.32 no.5
    • /
    • pp.589-592
    • /
    • 2005
  • Since G.N. Hounsfield's clinical use of computed tomography in 1971, digital imaging technique using computers has shown an eye opening progress. Progress has made 3-dimensional understanding of not only facial bones but muscles and other connective tissues possible through 3-dimensional reconstruction of preexisting tomographical images. Also, quantitative analysis of density, distance, volume has become possible, allowing objective analysis of preoperative and postoperative states through imaging. The authors measured the masseter muscle volume of 20 normal individuals and 8 female patients through 3-D reconstructive CT imaging and made a statistical analysis of the measurements. The method used in our study may be applied to the diagnosis of disease causing the change of the facial volume and presurgical design as a useful tool to provide objective information on the evaluation of surgery outcome.

Prognostic Value of Dual-Energy CT-Based Iodine Quantification versus Conventional CT in Acute Pulmonary Embolism: A Propensity-Match Analysis

  • Dong Jin Im;Jin Hur;Kyunghwa Han;Young Joo Suh;Yoo Jin Hong;Hye-Jeong Lee;Young Jin Kim;Byoung Wook Choi
    • Korean Journal of Radiology
    • /
    • v.21 no.9
    • /
    • pp.1095-1103
    • /
    • 2020
  • Objective: The present study aimed to investigate whether quantitative dual-energy computed tomography (DECT) parameters offer an incremental risk stratification benefit over the CT ventricular diameter ratio in patients with acute pulmonary embolism (PE) by using propensity score analysis. Materials and Methods: This study was conducted on 480 patients with acute PE who underwent CT pulmonary angiography (CTPA) or DECT pulmonary angiography (DE CT-PA). This propensity-matched study population included 240 patients with acute PE each in the CTPA and DECT groups. Altogether, 260 (54.1%) patients were men, and the mean age was 64.9 years (64.9 ± 13.5 years). The primary endpoint was all-cause death within 30 days. The Cox proportional hazards regression model was used to identify associations between CT parameters and outcomes and to identify potential predictors. Concordance (C) statistics were used to compare the prognoses between the two groups. Results: In both CTPA and DECT groups, right to left ventricle diameter ratio ≥ 1 was associated with an increased risk of all-cause death within 30 days (hazard ratio: 3.707, p < 0.001 and 5.573, p < 0.001, respectively). However, C-statistics showed no statistically significant difference between the CTPA and DECT groups for predicting death within 30 days (C-statistics: 0.759 vs. 0.819, p = 0.117). Conclusion: Quantitative measurement of lung perfusion defect volume by DECT had no added benefit over CT ventricular diameter ratio for predicting all-cause death within 30 days.

Assessment of the Severity of Coronavirus Disease: Quantitative Computed Tomography Parameters versus Semiquantitative Visual Score

  • Xi Yin;Xiangde Min;Yan Nan;Zhaoyan Feng;Basen Li;Wei Cai;Xiaoqing Xi;Liang Wang
    • Korean Journal of Radiology
    • /
    • v.21 no.8
    • /
    • pp.998-1006
    • /
    • 2020
  • Objective: To compare the accuracies of quantitative computed tomography (CT) parameters and semiquantitative visual score in evaluating clinical classification of severity of coronavirus disease (COVID-19). Materials and Methods: We retrospectively enrolled 187 patients with COVID-19 treated at Tongji Hospital of Tongji Medical College from February 15, 2020, to February 29, 2020. Demographic data, imaging characteristics, and clinical data were collected, and based on the clinical classification of severity, patients were divided into groups 1 (mild) and 2 (severe/critical). A semiquantitative visual score was used to estimate the lesion extent. A three-dimensional slicer was used to precisely quantify the volume and CT value of the lung and lesions. Correlation coefficients of the quantitative CT parameters, semiquantitative visual score, and clinical classification were calculated using Spearman's correlation. A receiver operating characteristic curve was used to compare the accuracies of quantitative and semi-quantitative methods. Results: There were 59 patients in group 1 and 128 patients in group 2. The mean age and sex distribution of the two groups were not significantly different. The lesions were primarily located in the subpleural area. Compared to group 1, group 2 had larger values for all volume-dependent parameters (p < 0.001). The percentage of lesions had the strongest correlation with disease severity with a correlation coefficient of 0.495. In comparison, the correlation coefficient of semiquantitative score was 0.349. To classify the severity of COVID-19, area under the curve of the percentage of lesions was the highest (0.807; 95% confidence interval, 0.744-0.861: p < 0.001) and that of the quantitative CT parameters was significantly higher than that of the semiquantitative visual score (p = 0.001). Conclusion: The classification accuracy of quantitative CT parameters was significantly superior to that of semiquantitative visual score in terms of evaluating the severity of COVID-19.

Computed Tomography Findings Associated with Treatment Failure after Antibiotic Therapy for Acute Appendicitis

  • Wonju Hong;Min-Jeong Kim;Sang Min Lee;Hong Il Ha;Hyoung-Chul Park;Seung-Gu Yeo
    • Korean Journal of Radiology
    • /
    • v.22 no.1
    • /
    • pp.63-71
    • /
    • 2021
  • Objective: To identify the CT findings associated with treatment failure after antibiotic therapy for acute appendicitis. Materials and Methods: Altogether, 198 patients who received antibiotic therapy for appendicitis were identified by searching the hospital's surgery database. Selection criteria for antibiotic therapy were uncomplicated appendicitis with an appendiceal diameter equal to or less than 11 mm. The 86 patients included in the study were divided into a treatment success group and a treatment failure group. Treatment failure was defined as a resistance to antibiotic therapy or recurrent appendicitis during a 1-year follow-up period. Two radiologists independently evaluated the following CT findings: appendix-location, involved extent, maximal diameter, thickness, wall enhancement, focal wall defect, periappendiceal fat infiltration, and so on. For the quantitative analysis, two readers independently measured the CT values at the least attenuated wall of the appendix by drawing a round region of interest on the enhanced CT (HUpost) and non-enhanced CT (HUpre). The degree of appendiceal wall enhancement (HUsub) was calculated as the subtracted value between HUpost and HUpre. A logistic regression analysis was used to identify the CT findings associated with treatment failure. Results: Sixty-four of 86 (74.4%) patients were successfully treated with antibiotic therapy, with treatment failure occurring in the remaining 22 (25.5%). The treatment failure group showed a higher frequency of hypoenhancement of the appendiceal wall than the success group (31.8% vs. 7.8%; p = 0.005). Upon quantitative analysis, both HUpost (46.7 ± 21.3 HU vs. 58.9 ± 22.0 HU; p = 0.027) and HUsub (26.9 ± 17.3 HU vs. 35.4 ± 16.6 HU; p = 0.042) values were significantly lower in the treatment failure group than in the success group. Conclusion: Hypoenhancement of the appendiceal wall was significantly associated with treatment failure after antibiotic therapy for acute appendicitis.

Silver Diamine Fluoride Compound for Dental Caries and Its Characterisation Using Microscopic Computed Tomography and Nanoindentation

  • So-Youn An;Myung-Jin Lee;Min-Kyung Kang;Youn-Soo Shim
    • Journal of dental hygiene science
    • /
    • v.23 no.1
    • /
    • pp.60-67
    • /
    • 2023
  • Background: In our study, a silver diamine fluoride (SDF) compound for the treatment of dental caries was synthesized to characterize its remineralization activity upon direct application to deciduous teeth. This study aimed to use microscopic computed tomography (microCT) and nanoindentation to evaluate whether SDF composite application could effectively arrest dental caries in five exfoliated primary molars. Methods: Carious teeth were extracted and visually examined using quantitative photofluorescence devices (Qraycam and QraypenTM). After performing microCT, the SDF composite was applied to the teeth according to the manufacturer's instructions. The researchers exchanged and precipitated the irritant saliva once daily for 1 week. The teeth were sectioned longitudinally through the centers of the mesial and distal surfaces, embedded, polished, and measured using nanoindentation. Thereafter, microCT was repeated. Statistical analyses were performed using GraphPad Prism software. Results: Following SDF composite application, a remineralized layer was observed on microCT images, and the hardness increased when measured using nanoindentation. We found that demineralized enamel presented with an increased number of irregular crystals in the deep carious lesion group compared with those in the shallow carious lesion group, resulting in a rougher surface. Conclusion: The SDF composite may be used for remineralization of early caries and cessation of advanced caries in primary molars.

Use of Quantitative CT to Predict Postoperative Lung Function (Comparison of Quantitative CT and Perfusion Lung Scan) (폐절제술후의 폐기능 예측에 대한 나선식 정량적 CT의 유용성 (나선식 정량적 CT와 폐관류스캔과의 비교))

  • 이조한
    • Journal of Chest Surgery
    • /
    • v.33 no.10
    • /
    • pp.798-805
    • /
    • 2000
  • Background : the prediction on changes in the lung function after lung surgery would be an important indicator in terms of the operability and postoperative complications. In order to predict the postoperative FEV1 - the commonly used method for measuring changes in lung function- a comparison between the quantitative CT and the perfusion lung scan was made and proved its usefulness. Material and Method : The subjects included 22 patients who received perfusion lung scan and quantitative CT preoperatively and with whom the follow-up of PFT were possibles out of the pool of patients who underwent right lobectomy or right pneumonectomy between June of 1997 and December of 1999. The FEV1 and FVC were calibrated by performing the PFT on each patient and then the predicted FEV1 and FVC were calculated after performing perfusion lung scan and quantitative CT postoperatively. The FEV1 and FVC were calibrated by performing the PFT after 1 week and after 3 momths following the surgery. Results : There was a significant mutual scan and the actual postoperative FEV1 and FVC at 1 week and 3 months. The predicted FEV1 and FVC(pneumonectomy group : r=0.962 and r=0.938 lobectomy group ; r=0.921 and r=913) using quantitative CT at 1 week postoperatively showed a higher mutual relationship than that predicted by perfusion lung scan(pneumonectomy group : r=0.927 and r=0.890 lobectomy group : r=0.910 and r=0.905) The result was likewise at 3 months postoperatively(CT -pneumonectomy group : r=0.799 and r=0.882 lobectomy group : r=0.934 and r=0.932) Conclusion ; In comparison to perfusion lung scan quantitative CT is more accurate in predicting lung function postoperatively and is cost-effective as well. Therefore it can be concluded that the quantitative CT is an effective method of replacing the perfusion lung scan in predicting lung function post-operatively. However it is noted that further comparative analysis using more data and follow-up studies of the patients is required.

  • PDF

Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: an ex vivo study

  • Park, Jin-Young;Chung, Jung-Ho;Lee, Jung-Seok;Kim, Hee-Jin;Choi, Seong-Ho;Jung, Ui-Won
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.1
    • /
    • pp.30-40
    • /
    • 2017
  • Purpose: Optical coherence tomography (OCT) is a noninvasive diagnostic technique that may be useful for both qualitative and quantitative analyses of the periodontium. Micro-computed tomography (micro-CT) is another noninvasive imaging technique capable of providing submicron spatial resolution. The purpose of this study was to present periodontal images obtained using ex vivo dental OCT and to compare OCT images with micro-CT images and histologic sections. Methods: Images of ex vivo canine periodontal structures were obtained using OCT. Biologic depth measurements made using OCT were compared to measurements made on histologic sections prepared from the same sites. Visual comparisons were made among OCT, micro-CT, and histologic sections to evaluate whether anatomical details were accurately revealed by OCT. Results: The periodontal tissue contour, gingival sulcus, and the presence of supragingival and subgingival calculus could be visualized using OCT. OCT was able to depict the surface topography of the dentogingival complex with higher resolution than micro-CT, but the imaging depth was typically limited to 1.2-1.5 mm. Biologic depth measurements made using OCT were a mean of 0.51 mm shallower than the histologic measurements. Conclusions: Dental OCT as used in this study was able to generate high-resolution, cross-sectional images of the superficial portions of periodontal structures. Improvements in imaging depth and the development of an intraoral sensor are likely to make OCT a useful technique for periodontal applications.

Evaluation of the Modulation Transfer Function for Computed Tomography by Using American Association Physics Medicine Phantom (컴퓨터단층검사에서 AAPM Phantom을 이용한 변조전달함수 평가)

  • Kim, Ki-Won;Choi, Kwan-Woo;Jeong, Hoi-Woun;Jang, Seo-Goo;Kwon, Kyung-Tae;Son, Soon-Yong;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.193-198
    • /
    • 2016
  • In clinical computed tomography (CT), regular quality assurance (QA) has been required. This study is to evaluate the MTF for analyzing the spatial resolution using AAPM phantom in CT exam. The dual source somatom definition flash (siemens healthcare, forchheim, Germany), the brilliance 64 (philips medical system Netherlands) and aquilion 64 (toshiba medical system, Japan) were used in this study. The quantitative evaluation was performed using the image J (wayne rasband national institutes of health, USA) and chart method which is measurement of modulation transfer function (MTF). In MTF evaluation, the spatial frequencies corresponding to the 50% MTF for the CT systems were 0.58, 0.28, and $0.59mm^{-1}$, respectively and the 10% MTF for the CT systems were 1.63, 0.89, and $1.21mm^{-1}$, respectively. This study could evaluate the characteristic of spatial resolution of MTF using chart method, suggesting the quantitative evaluation method using the data.

Studies on Quantitative Analysis of Salivary Gland using Computed Tomography (전산화단층사진을 이용한 타액선의 정량분석에 관한 연구)

  • Lee Sang-Chul;Lee Sam-Sun;Heo Min-Suk;Choi Soon-Chul;Park Tae-Won;You Dong-Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.1
    • /
    • pp.209-221
    • /
    • 1999
  • Purpose: The purpose of this study was to calculate the size and CT number of both normal parotid and submandibular gland. and evaluate their relation to sex, age and obesity using computed tomography. Materials and Methods: The computed tomography was performed parallel to the Frankfurt plane in 46 subjects with healthy salivary gland. The subjects were divided into the three groups (young, middle. old) according to their ages. The size of salivary gland was determined as maximum cross-sectional area and the CT number of salivary gland was determined as the mean CT number of three ROI's. The body mass index was calculated from weight and height. Results: The mean maximum cross-sectional area was 7.79(±1.25)cm² on parotid gland and 4.12(±0.83) cm² on submandibular gland. The mean CT number was -4.43(±23.87) HU on parotid gland and 50.01(±15.63) HU on submandibular gland. There was decreasing pattern of the maximum cross-sectional area of submandibular gland and the CT number of both parotid and submandibular gland according to age(p<0.05). As the body mass index increased. the maximum cross-sectional area of parotid gland increased and CT number of both parotid and submandibular gland decreased(p<0.05). The maximum cross-sectional area of submandibular gland in male was larger than that in female(p<0.05). As the maximum cross-sectional area and CT number of left salivary gland increased. those of right gland increased(p<0.05). Conclusion : Intra-individual differences in salivary gland size and CT number is considered in the age and individual obesity.

  • PDF