• 제목/요약/키워드: Computational structural dynamics

검색결과 352건 처리시간 0.032초

축방향으로 이동하는 티모센코보의 동특성 해석 (Dynamics of an Axially Moving Timoshenko Beam)

  • Kim, Joohong;Hyungmi Oh;Lee, Usik
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.403-403
    • /
    • 2002
  • The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural dynamics is known to provide very accurate solutions, while reducing the number of degrees-of-freedom to resolve the computational and cost problems. Thus, in the present paper, the spectral element model is formulated for the axially moving Timoshenko beam under a uniform axial tension. (omitted)

  • PDF

First-Order Mass Transfer in a Vortex-Dispersion Zone of an Axisymmetric Groove: Laboratory and Numerical Experiments

  • Kim, Young-Woo;Kang, Ki-Jun
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.651-657
    • /
    • 2010
  • Solute transport through a groove is affected by its vortices. Our laboratory and numerical experiments of dye transport through a single axisymmetric groove reveal evidence of enhanced spreading and mixing by the vortex, i.e., a new kind of dispersion called here the vortex dispersion. The uptake and release of contaminants by vortices in porous media is affected by the flow Reynolds number. The larger the flow Reynolds number, the larger is the vortex dispersion, and the larger is the mass-transfer rate between the mobile zone and the vortex. The long known dependence of the mass-transfer rate between the mobile and "immobile" zones in porous media on flow velocity can be explained by the presence of vortices in the "immobile" zone and their uptake and release of contaminants.

항공기용 배기덕트의 구조적 안정성 검토를 위한 전산유동해석 (Computational fluid analysis of Aircraft Exhaust Duct for Verification of Structural Stability)

  • 이창욱;김원철;박용석;양용준
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.606-608
    • /
    • 2017
  • 터보프롭 엔진의 배기덕트에 구조적 안정성을 검토하기 위해 유동해석을 수행하였다. 항공기의 비행조건에 따라 작용하는 추력과 전단력을 산출하기 위해 배기덕트내의 관내유동과 배기덕트 플랜지 방향의 유동을 Fluent 소프트웨어로 해석을 수행하여 추력, 전단력, 벤딩모멘트 값을 얻을 수 있었다. 해석결과, 허용 하중값을 초과하지 않음을 확인하였다.

  • PDF

Computational analysis of molecular dynamics results in a fuzzy stability system

  • C.C. Hung;T. Nguyen;C.Y. Hsieh
    • Advances in Computational Design
    • /
    • 제9권1호
    • /
    • pp.53-71
    • /
    • 2024
  • Owing to these mechanical properties, carbon nanotubes have the potential to be employed in many future devices and nanostructured materials. As an example, high Young modulus accompanied by their low density, makes them a good choice for reinforcing material in composites. Therefore, we empathize and manually derive the results which shows the utilized lemma and criterion are believed effective and efficient for aircraft structural analysis of composite and nonlinear scenarios. To be fair, the experiment by numerical computation and calculations were explained the perfectness of the methodology we provided in the research.

유한요소 모델 검증 및 개선 (Correlation and Update of Finite Element Model)

  • 왕세명;고창성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.195-204
    • /
    • 2000
  • The finite element analysis (FEA) is widely used in modern structural dynamics because the performance of structure can be predicted in early stage. However, due to the difficulty in determination of various uncertain parameters, it is not easy to obtain a reliable finite element model. To overcome these difficulties, a updating program of FE model is developed by consisting of pretest, correlation and update. In correlation, it calculates modal assurance criteria, cross orthogonality, mixed orthogonality and coordinate modal assurance criteria. For the model updating, the continuum sensitivity analysis and design optimization tool(DOT) are used. The SENSUP program is developed for model updating giving physical parameter sensitivity. The developed program is applied to practical examples such as the BLDC spindle motor of HDD, and upper housing of induction motor. And the sensor placement for the square plate is compared using several methods.

  • PDF

주파수 영역에서의 Ritz 모드 중첩법 (Ritz Mode Superposition Method in Frequency Domain)

  • 주관정
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1989년도 봄 학술발표회 논문집
    • /
    • pp.33-37
    • /
    • 1989
  • According to the Rayleigh-Ritz approximation method, a solution can be represented as a finite series consisting of space-dependent functions, which satisfy all the geometric boundary conditions of the problem and appropriate smoothness requirement in the interior of the domain. In this paper, an efficient formulation for solving structural dynamics systems in frequency domain is presented. A general procedure called Ritz modes (or vectors) generation algorithm is used to generate the admissible functions, i.e. Ritz modes, Then, the use of direct superposition of the Ritz modes is utilized to reduce the size of the problem in spatial dimension via geometric coordinates projection. For the reduced system, the frequency domain approach is applied. Finally, a numerical example is presented to illustrate the effectiveness of the proposed method.

  • PDF

Damage Simulation of Natural Draught Cooling Towers

  • Noh, S.Y.;Huh, Y.
    • Computational Structural Engineering : An International Journal
    • /
    • 제2권1호
    • /
    • pp.25-32
    • /
    • 2002
  • Natural draught cooling towers often develop visible crack structures as consequences of progressive damage processes over their life-time. The aim of this paper is a numerical demonstration of the progressive damage process of cooling towers, representatively for the reinforced concrete structures, in order to improve the durability and extend the life-time of structures subjected to such damage processes. For the analyses, the applied material model for reinforced concrete will be briefly introduced. An existing natural draught cooling tower with a pronounced crack structure, in which this crack structure indicates the typical damage pattern of large cooling towers will be numerically simulated. The change of dynamical behavior of the structure with regard to natural frequencies, reflecting the global damage process due to the degrading stiffness of the structure in dependence of the load type and intensity, will be presented and discussed.

  • PDF

개선된 알고리즘을 이용한 그루브를 통한 표면형상변형 동특성 변경법 (Structural Dynamics Modification Using Surface Grooving Technique : Modified Algorithm and Result of Fine HDD Cover Model)

  • 박미유;박영진;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.834-837
    • /
    • 2005
  • Structural Dynamics Modification (SDM) is a very effective technique to improve structure's dynamic characteristics by adding or removing auxiliary structures, changing material properties and shape of structure. Among those of SDM technique, the method to change shape of structure has been mostly relied on engineer's experience and trial-and-error process which are very time consuming. In order to develop a systematic method to change structure shape, surface grooving technique is studied and successfully applied to HDD cover model. At first, to check the effect of mesh size, surface grooving technique was tested to the fine HDD cover FEmodel. And fur the more efficient method, the algorithm is modified. Removing the low-valued modal strain energy element among the target domain, computational effort can be greatly reduced and the result of simulation is similar with the other simulation result.

  • PDF

3차원 축류압축기 블레이드의 유체유발진동 해석 (Flow-Induced Vibration (FIV) Analysis of a 3D Axial Compressor Blade)

  • 김동현;김유성;;정규강;김경희;민대기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.652-653
    • /
    • 2009
  • In this study, flow-induced vibration (FIV) analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responses of designed compressor blades. Fluid domains are modeled using the computational grid system with local grid deforming and remeshing techniques. Reynolds-averaged Navier-Stokes equations with $\kappa-\varepsilon$ turbulence model are solved for unsteady flow problems of the rotating compressor model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.

  • PDF

3차원 축류압축기 블레이드의 유체유발진동 해석 (Flow-induced Vibration(FIV) Analysis of a 3D Axial Compressor Blade)

  • 김동현;김유성;;정규강;김경희;민대기
    • 한국소음진동공학회논문집
    • /
    • 제19권6호
    • /
    • pp.551-559
    • /
    • 2009
  • In this study, flow-induced vibration(FIV) analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate detailed dynamic responses of designed compressor blades. Fluid domains are modeled using the computational grid system with local grid deforming and remeshing techniques. Reynolds-averaged Navier-Stokes equations with $\kappa-\epsilon$ turbulence model are solved for unsteady flow problems of the rotating compressor model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction(FSI) problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.