• 제목/요약/키워드: Computational structural dynamics

검색결과 352건 처리시간 0.024초

분자동역학을 이용한 나노 와이어의 역학적 거동 해석 (Analysis of Mechanical Behavior of Nanowire by Molecular Dynamics Simulation)

  • 이병용;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.433-438
    • /
    • 2007
  • Mechanical behavior of copper Nanowire is investigated, An FCC Nanowire model composed of 1,408 atoms is used for NID simulation, Simulations are performed within NVT ensemble setting without periodic boundary conditions, Nose-Poincare MD algorithm is employed to guarantee preservation of Hamiltonian. Numerical tensile tests are carried out with constant strain rate, Stress-strain curve is constructed from the calculated Cauchy stresses and specified strain values, Non-linear behavior appears around $\varepsilon$=0.064, At this instance, starting of structural reorientations are observed.

  • PDF

Studies on structural interaction and performance of cement composite using Molecular Dynamics

  • Sindu, B.S.;Alex, Aleena;Sasmal, Saptarshi
    • Advances in Computational Design
    • /
    • 제3권2호
    • /
    • pp.147-163
    • /
    • 2018
  • Cementitious composites are multiphase heterogeneous materials with distinct dissimilarity in strength under compression and tension (high under compression and very low under tension). At macro scale, the phenomenon can be well-explained as the material contains physical heterogeneity and pores. But, it is interesting to note that this dissimilarity initiates at molecular level where there is no heterogeneity. In this regard, molecular dynamics based computational investigations are carried out on cement clinkers and calcium silicate hydrate (C-S-H) under tension and compression to trace out the origin of dissimilarity. In the study, effect of strain rate, size of computational volume and presence of un-structured atoms on the obtained response is also investigated. It is identified that certain type of molecular interactions and the molecular structural parameters are responsible for causing the dissimilarity in behavior. Hence, the judiciously modified or tailored molecular structure would not only be able to reduce the extent of dissimilarity, it would also be capable of incorporating the desired properties in heterogeneous composites. The findings of this study would facilitate to take step to scientifically alter the structure of cementitious composites to attain the desired mechanical properties.

비정상 CFD 해석기법을 활용한 5 MW 해상풍력터빈 극한 설계하중조건 해석 (Extreme Design Load Case Analyses of a 5 MW Offshore Wind Turbine Using Unsteady Computational Fluid Dynamics)

  • 김동현;이장호;트란탄도안;곽영섭;송진섭
    • 풍력에너지저널
    • /
    • 제5권1호
    • /
    • pp.22-32
    • /
    • 2014
  • The structural design of a wind turbine must show the verification of the structural integrity of all load-carrying components. Also, design load calculations shall be performed using appropriate and accurate methods. In this study, advanced numerical approach for the calculation of design loads based on unsteady computational fluid dynamics (CFD) is presented considering extreme design load conditions such as the extreme coherent gust (ECG) and the 50 year extreme operating gust (EOG). Unsteady aerodynamic loads are calculated based on Reynolds average Navier-Stokes (RANS) equations with shear-stress transport k-ω(SST k-ω) turbulent model. A full three-dimensional 5 MW offshore wind-turbine model with rotating blades, hub, nacelle, and tower configuration is practically considered and its aerodynamic interference effect among blades, nacelle, and tower is also accurately considered herein. Calculated blade loads based on unsteady CFD method with respect to blade azimuth angle are compared with those by NREL FAST code and physically investigated in detail.

계산과학 분야의 교육 및 융합연구 지원을 위한 EDISON 플랫폼 (EDISON Platform to Supporting Education and Integration Research in Computational Science)

  • 진두석;정영진;이종숙;조금원;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.466-469
    • /
    • 2011
  • 최근에는 열유체, 물리, 화학, 구조동역학, 전산설계 등의 응용과학 분야의 교육 및 연구에 실제 실험이 아닌 슈퍼컴퓨터 및 고성능 네트워크 기반의 사이버 인프라에서 과학적 가정에 의해 복잡한 공학문제를 수치적 모델링과 컴퓨터 시뮬레이션을 통해 해결하는 계산과학을 이용하는 최적의 방법론 및 기법들의 연구의 필요성이 증대되고 있다. 본 논문에서는 컴퓨팅 시뮬레이션 기법을 활용한 실험 체험형 교육의 일환으로, 이공계 교수, 학생, 연구자, 산업체 인력 등이 사이버 인프라스트럭처 기반으로 최신 시뮬레이션 SW를 활용하여 차세대 교육 연구를 융합할 수 있는 EDISON 개방형 통합 플랫폼을 제시한다. EDISON 플랫폼은 사용자들에게 보다 쉽고, 편하고, 효과적인 서비스 제공을 위해 3계층(EDISON 응용 프레임워크, EDISON 미들웨어, EDISON 인프라 자원)으로 구성되고 5개 분야(열유체, 화학, 물리, 구조동역학, 전산설계) 문제해결 환경을 위한 교육 연구용 웹 포털 서비스를 제공한다.

  • PDF

풍하중 효과를 고려한 MW급 풍력발전기 타워의 지진응답 해석 (Seismic Response Analysis of a MW Class Wind-Turbine Considering Applied Wind Loads)

  • 최현철;김동현;김동만;박강균
    • 한국전산구조공학회논문집
    • /
    • 제23권2호
    • /
    • pp.209-215
    • /
    • 2010
  • 본 논문에서는 CFD와 FEM에 기초한 진보된 전산해석 기법을 적용하였고 지진에 의한 수평 및 수직방향 기반가진 및 풍하중 효과를 동시에 고려하여 MW급 풍력발전기의 지진응답 해석을 수행하였다. 본 연구에서는 실용적인 응답특성 파악을 위해 시간영역 수치해석기법을 적용하였으며, 지진기반하중 및 풍하중에 의한 영향을 상호 비교하였다. 본 연구의 결과를 통해 관성 특성이 매우 큰 초대형 풍력발전기가 정상작동 조건 중 지진이 유발되는 경우가 타워에 유발되는 응력특성에 큰 영향을 미칠 수 있기 때문에 중요하게 고려될 필요성이 있음을 알 수 있었다.

전산유체역학 해석에 의한 교량 단면의 공력 특성값 추정 (Prediction of Aerodynamic Coefficients of Bridges Using Computational Fluid Dynamics)

  • 홍영길
    • 한국안전학회지
    • /
    • 제28권1호
    • /
    • pp.57-62
    • /
    • 2013
  • Aerodynamic characteristics of cross section shape is an important parameter for the wind response and structural stability of long span bridges. Numerical simulation methods have been introduced to estimate the aerodynamic characteristics for more detailed flow analysis and cost saving in place of existing wind tunnel experiment. In this study, the computational fluid dynamics(CFD) simulation and large eddy simulation( LES) technique were used to estimate lift, drag and moment coefficients of four cross sections. The Strouhal numbers were also determined by the fast Fourier transform of time series of the lift coefficient. The values from simulations and references were in a good agreement with average difference of 16.7% in coefficients and 8.5% in the Strouhal numbers. The success of the simulations is expected to attribute to the practical use of numerical estimation in construction engineering and wind load analysis.

Numerical simulation on fluid-structure interaction of wind around super-tall building at high reynolds number conditions

  • Huang, Shenghong;Li, Rong;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.197-212
    • /
    • 2013
  • With more and more high-rise building being constructed in recent decades, bluff body flow with high Reynolds number and large scale dimensions has become an important topic in theoretical researches and engineering applications. In view of mechanics, the key problems in such flow are high Reynolds number turbulence and fluid-solid interaction. Aiming at such problems, a parallel fluid-structure interaction method based on socket parallel architecture was established and combined with the methods and models of large eddy simulation developed by authors recently. The new method is validated by the full two-way FSI simulations of 1:375 CAARC building model with Re = 70000 and a full scale Taipei101 high-rise building with Re = 1e8, The results obtained show that the proposed method and models is potential to perform high-Reynolds number LES and high-efficiency two-way coupling between detailed fluid dynamics computing and solid structure dynamics computing so that the detailed wind induced responses for high-rise buildings can be resolved practically.

Design, development and ground testing of hingeless elevons for MAV using piezoelectric composite actuators

  • Dwarakanathan, D.;Ramkumar, R.;Raja, S.;Rao, P. Siva Subba
    • Advances in aircraft and spacecraft science
    • /
    • 제2권3호
    • /
    • pp.303-328
    • /
    • 2015
  • A design methodology is presented to develop the hingeless control surfaces for MAV using adhesively bonded Macro Fiber Composite (MFC) actuators. These actuators have got the capability to deflect the trailing edge surfaces of the wing to attain the required maneuverability, besides achieving the set aerodynamic trim condition. A scheme involving design, analysis, fabrication and testing procedure has been adopted to realize the trailing edge morphing mechanism. The stiffness distribution of the composite MAV wing is tailored such that the induced deflection by piezoelectric actuation is approximately optimized. Through ground testing, the proposed concept has been demonstrated on a typical MAV structure. Electromechanical analysis is performed to evaluate the actuator performance and subsequently aeroelastic and 2D CFD analyses are carried out to see the functional requirements of wing trailing edge surfaces to behave as elevons. Efforts have been made to obtain the performance comparison of conventional control surfaces (elevons) with morphing wing trailing edge surfaces. A significant improvement in lift to drag ratio is noticed with morphed wing configuration in comparison to conventional wing. Further, it has been shown that the morphed wing trailing edge surfaces can be deployed as elevons for aerodynamic trim applications.

공탄성 변형효과를 고려한 5MW급 풍력발전 블레이드의 피치각에 따른 성능해석 (Aerodynamic and Structural Design of 6kW Class Vertical-Axis Wind Turbine)

  • 김요한;김동현;황미현;김경희;황병선;홍은성
    • 한국유체기계학회 논문집
    • /
    • 제14권3호
    • /
    • pp.39-44
    • /
    • 2011
  • In this study, performance analyses have been conducted for a 5MW class wind turbine blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade. Reynolds-averaged Navier-Stokes (RANS) equations with K-${\epsilon}$ turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Predicted aerodynamic performance considering structural deformation effect of the blade show different results compared to the case of rigid blade model.

High-fidelity numerical investigation on structural integrity of SFR fuel cladding during design basis events

  • Seo-Yoon Choi;Hyung-Kyu Kim;Min-Seop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.359-374
    • /
    • 2024
  • A high-fidelity numerical analysis methodology was proposed for evaluating the fuel rod cladding integrity of a Prototype Gen IV Sodium Fast Reactor (PGSFR) during normal operation and Design basis events (DBEs). The MARS-LMR code, system transient safety analysis code, was applied to analyze the DBEs. The results of the MARS-LMR code were used as boundary condition for a 3D computational fluid dynamics (CFD) analysis. The peak temperatures considering HCFs satisfied the cladding temperature limit. The temperature and pressure distributions were calculated by ANSYS CFX code, and applied to structural analysis. Structural analysis was performed using ANSYS Mechanical code. The seismic reactivity insertion SSE accident among DBEs had the highest peak cladding temperature and the maximum stress, as the value of 87 MPa. The fuel cladding had over 40 % safety margin, and the strain was below the strain limit. Deformation behavior was elucidated for providing relative coordinate data on each active fuel rod center. Bending deformation resulted in a flower shape, and bowing bundle did not interact with the duct of fuel assemblies. Fuel rod maximum expansion was generated with highest stress. Therefore, it was concluded that the fuel rod cladding of the PGSFR has sufficient structural safety margin during DBEs.