• Title/Summary/Keyword: Computational structural dynamics

Search Result 352, Processing Time 0.022 seconds

Dynamically Adaptive Finite Element Mesh Generation Schemes

  • Yoon, Chong-Yul;Park, Joon-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.659-665
    • /
    • 2010
  • The finite element method(FEM) is proven to be an effective approximate method of structural analysis if proper element types and meshes are chosen, and recently, the method is often applied to solve complex dynamic and nonlinear problems. A properly chosen element type and mesh yields reliable results for dynamic finite element structural analysis. However, dynamic behavior of a structure may include unpredictably large strains in some parts of the structure, and using the initial mesh throughout the duration of a dynamic analysis may include some elements to go through strains beyond the elements' reliable limits. Thus, the finite element mesh for a dynamic analysis must be dynamically adaptive, and considering the rapid process of analysis in real time, the dynamically adaptive finite element mesh generating schemes must be computationally efficient. In this paper, a computationally efficient dynamically adaptive finite element mesh generation scheme for dynamic analyses of structures is described. The concept of representative strain value is used for error estimates and the refinements of meshes use combinations of the h-method(node movement) and the r-method(element division). The shape coefficient for element mesh is used to correct overly distorted elements. The validity of the scheme is shown through a cantilever beam example under a concentrated load with varying values. The example shows reasonable accuracy and efficient computing time. Furthermore, the study shows the potential for the scheme's effective use in complex structural dynamic problems such as those under seismic or erratic wind loads.

Dynamic Response Analyses of Fixed Type Substructures for 2.5MW Class Offshore Wind Turbine

  • Song, Chang Yong;Yoo, Jaehoon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.15-24
    • /
    • 2017
  • This paper explores a series of numerical simulations of dynamic responses of multi-piles (dolphin) type substructures for 2.5MW class offshore wind turbine. Firstly computational fluid dynamics (CFD) simulation was performed to evaluate wave loads on the dolphin type substructures with the design wave condition for the west-south region of Korea. Numerical wave tank (NWT) based on CFD was adopted to generate numerically a progressive regular wave using a virtual piston type wave maker. It was found that the water-piercing area of piles of the substructure is a key parameter determining the wave load exerted in horizontal direction. In the next the dynamic structural responses of substructure members under the wave load were calculated using finite element analysis (FEA). In the FEA approach, the dynamic structural responses were able to be calculated including a deformable body effect of substructure members when wave load on each member was determined by Morison's formula. The paper numerically identifies dynamic response characteristics of dolphin type substructures for 2.5MW class offshore wind turbine.

Operational Vibration Experiment and Analysis of a Small Vertical-Axis Wind Turbine Considering the Effect of a Tower Stiffness (타워강성 효과를 고려한 소형 수직축 풍력발전기 운전 진동실험 및 해석)

  • Choo, Heon-Ho;Sim, Jae-Park;Oh, Min-Woo;Kim, Dong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.5-9
    • /
    • 2013
  • In this study, operational vibration experiment and analysis have been conducted for the 4-blade small vertical-axis wind turbine (VAWT) including the effect of tower elastic behavior. Computational structural dynamics analysis method is applied to obtain Campbell diagram for the VAWT with elastic tower. An open type wind-tunnel is used to change and keep the wind velocity during the ground test. Equivalent elastic tower is used to support the VAWT so that the effect of elastic stiffness of the tower can be considered in the present vibration experiment. Various excitation conditions with wind loads are considered and the dominant operating vibration phenomena are physically investigated in detail.

Flat-bottomed design philosophy of Y-typed bifurcations in hydropower stations

  • Wang, Yang;Shi, Chang-zheng;Wu, He-gao;Zhang, Qi-ling;Su, Kai
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1085-1105
    • /
    • 2016
  • The drainage problem in bifurcations causes pecuniary losses when hydropower stations are undergoing periodic overhaul. A new design philosophy for Y-typed bifurcations that are flat-bottomed is proposed. The bottoms of all pipe sections are located at the same level, making drainage due to gravity possible and shortening the draining time. All fundamental curves were determined, and contrastive analysis with a crescent-rib reinforced bifurcation in an actual project was conducted. Feasibility demonstrations were researched including structural characteristics based on finite element modeling and hydraulic characteristics based on computational fluid dynamics. The new bifurcation provided a well-balanced shape and reasonable stress state. It did not worsen the flow characteristics, and the head loss was considered acceptable. The proposed Y-typed bifurcation was shown to be suitable for pumped storage power stations.

Dynamics Analysis for Flexible Systems using Finite Elements and Algebraic Quaternions (4원법과 유한요소를 이용한 유연체 동역학의 해석기법)

  • Lee, Dong-Hyun;Yun, Seong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.141-149
    • /
    • 2005
  • This paper deals with formulations of the energy equilibrium equation by an introduction of the algebraic description, quarternion, which meets conservations of system energy for the equation of motion. Then the equation is discretized to analyze the dynamits analysis of flexible multibody systems in such a way that the work done by the constrained force completely is eliminated. Meanwhile, Rodrigues parameters we used to express the finite rotation lot the proposed method. This method lot the initial essential step to a guarantee of developments of the 3D dynamical problem provides unconditionally stable conditions for the nonlinear problems through the numerical examples.

CFD/CSD COUPLED ANALYSIS FOR HART II ROTOR-FUSELAGE MODEL AND FUSELAGE EFFECT ANALYSIS (HART II 로터-동체 모델의 CFD/CSD 연계해석과 동체효과 분석)

  • Sa, J.H.;You, Y.H.;Park, J.S.;Park, S.H.;Jung, S.N.;Yu, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.343-349
    • /
    • 2011
  • A loosely coupling method is adopted to combine a computational fluid dynamics (CFD) solver and the comprehensive structural dynamics (CSD) code, CAMRAD II, in a systematic manner to correlate the airloads, vortex trajectories, blade motions, and structural loads of the HART I rotor in descending flight condition. A three-dimensional compressible Navier-Stokes solver, KFLOW, using chimera overlapped grids has been used to simulate unsteady flow phenomena over helicopter rotor blades. The number of grids used in the CFD computation is about 24 million for the isolated rotor and about 37.6 million for the rotor-fuselage configuration while keeping the background grid spacing identical as 10% blade chord length. The prediction of blade airloads is compared with the experimental data. The current method predicts reasonably well the BVI phenomena of blade airloads. The vortices generated from the fuselage have an influence on airloads in the 1st and 4th quadrants of rotor disk. It appeared that presence of the pylon cylinder resulted in complex turbulent flow field behind the hub center.

  • PDF

Multi-scale Analysis of Thin Film considering Surface effects (표면효과를 고려한 박막구조의 멀티스케일 해석)

  • Choi, Jin-Bok;Jung, Kwang-Sub;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.427-432
    • /
    • 2007
  • In general, the response of bulk material is independent of its size when it comes to considering classical elasticity theory. Because the surface to bulk ratio of the large solids is very small, the influence of surface can be negligible. But the surface effect plays important role as the surface to bulk ratio becomes larger, that is, the contribution of the surface effect must be considered in nano-size elements such as thin film or beam structure. Molecular dynamics computation has been a conventional way to analyze these ultra-thin structures but this method is limited to simulate on the order of $10^6-10^8$ atoms for a few nanoseconds, and besides, very time consuming. Analysis of structures in submicro to micro range(thin-film, wire etc.) is difficult with classical molecular dynamics due to the restriction of computing resources and time. Therefore, in this paper, the continuum-based method is considered to simulate the overall physical and mechanical properties of the structures in nano-scale, especially, for the thin-film.

  • PDF

Flow-Induced Vibration Analysis of 2-DOF System Using Unstructured Euler Code (비정렬 오일러 코드를 이용한 2자유도계 시스템의 유체유발 진동해석)

  • Kim, Dong-Hyun;Park, Young-Min;Lee, In;Kwon, O-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.675-680
    • /
    • 2001
  • In this study, a fluid/structure coupled analysis system using computational fluid dynamics and computational structural dynamics has been developed. The unsteady flow fields are predicted using unstructured Euler code. Coupled time-integration method (CTIM) was applied to computer simulation of the flow-induced vibration phenomena. To investigate the interaction effect of shock motions, 2-DOF airfoil systems have been studied in the subsonic and transonic flow region. Also, aeroelastic analyses for the airfoil with an arbitrary object are performed to show the analysis capability and interference effects for the complex geometries. The present results show the flutter stabilities and characteristics of aeroelastic responses with moving shock effects.

  • PDF

Numerical investigation of flow structures and aerodynamic pressures around a high-speed train under tornado-like winds

  • Simin Zou;Xuhui He;Teng Wu
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.295-307
    • /
    • 2024
  • The funnel-shaped vortex structure of tornadoes results in a spatiotemporally varying wind velocity (speed and direction) field. However, very limited full-scale tornado data along the height and radius positions are available to identify and reliably establish a description of complex vortex structure together with the resulting aerodynamic effects on the high-speed train (HST). In this study, the improved delayed detached eddy simulation (IDDES) for flow structures and aerodynamic pressures around an HST under tornado-like winds are conducted to provide high-fidelity computational fluid dynamics (CFD) results. To demonstrate the accuracy of the numerical method adopted in this study, both field observations and wind-tunnel data are utilized to respectively validate the simulated tornado flow fields and HST aerodynamics. Then, the flow structures and aerodynamic pressures (as well as aerodynamic forces and moments) around the HST at various locations within the tornado-like vortex are comprehensively compared to highlight the importance of considering the complex spatiotemporal wind features in the HST-tornado interactions.

Proper Orthogonal Decomposition Based Intrusive Reduced Order Models to Accelerate Computational Speed of Dynamic Analyses of Structures Using Explicit Time Integration Methods (외연적 시간적분법 활용 동적 구조해석 속도 향상을 위한 적합직교분해 기반 침습적 차수축소모델 적용 연구)

  • Young Kwang Hwang;Myungil Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.9-16
    • /
    • 2024
  • Using the proper orthogonal decomposition (POD) based intrusive reduced order model (ROM), the total degrees of freedom of the structural system can be significantly reduced and the critical time step satisfying the conditional stability increases in the explicit time integrations. In this study, therefore, the changes in the critical time step in the explicit time integrations are investigated using both the POD-ROM and Voronoi-cell lattice model (VCLM). The snapshot matrix is composed of the data from the structural response under the arbitrary dynamic loads such as seismic excitation, from which the POD-ROM is constructed and the predictive capability is validated. The simulated results show that the significant reduction in the computational time can be achieved using the POD-ROM with sufficiently ensuring the numerical accuracy in the seismic analyses. In addition, the validations show that the POD based intrusive ROM is compatible with the Voronoi-cell lattice based explicit dynamic analyses. In the future study, the research results will be utilized as an elemental technology for the developments of the real-time predictive models or monitoring system involving the high-fidelity simulations of structural dynamics.