• 제목/요약/키워드: Computational heat transfer analysis

검색결과 396건 처리시간 0.022초

딤플형 판형 열교환기의 열유동 수치해석 (A Numerical Analysis of Flow and Heat Transfer in the Plate Heat Exchanger with Dimple)

  • 안혁진;이상혁;이명성;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.121-125
    • /
    • 2008
  • In this study, the characteristics of internal flow and the heat transfer performance of dimpled plate heat exchanger were numerically investigated. For the numerical analysis, conjugate heat transfer method between cold fluid - plate - hot fluid was studied with appropriate boundary conditions. Velocity magnitude, temperature and pressure distribution were obtained from the simulation. Correlations for fanning f-factor and Colburn j-factor were obtained from numerical results and compared to the experimented data.

  • PDF

PMSM 전동기 모터의 복합 열전달 해석을 위한 CFD 프로그램 개발 (DEVELOPMENT OF CFD PROGRAM FOR THE CONJUGATE HEAT TRANSFER ANALYSIS OF PMSM ELECTRIC MOTOR)

  • 이정희;;허남건;김주한;김영균
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.488-493
    • /
    • 2011
  • The object of this study is to develope the program for analyzing the fluid flow and heat transfer of PMSM electric motor. The program will be mainly used for inexperienced users of CFD analysis. So it has to be performed using the geometry data and the heat source of each part only. Interface program for converting the given data to the instruction of pre-processor is developed. The conjugate heat transfer between a flow passage of the motor and inner parts consisting of rotor and stator is regarded. In order to reduce the computational time and memory storage, cyclic boundary condition is applied. For the numerical simulation, MRF(Multi-Reference Frame) method is used to consider rotating operation of the rotor and heat source is applied to the copper, wire, and magnetic parts in the motor. On the screen of computer, the users can show the velocity distributions and the contours such as pressure, turbulent kinetic energy, turbulent dissipation rate and temperature.

  • PDF

곡관부 열전달 성능 강화를 위한 에어포일형 가이드 베인의 형상 최적설계 (SHAPE OPTIMIZATION OF THE AIRFOIL-GUIDE VANES IN THE TURNING REGION FOR A ROTATING TWO-PASS CHANNEL)

  • 문미애;김광용
    • 한국전산유체공학회지
    • /
    • 제17권2호
    • /
    • pp.1-10
    • /
    • 2012
  • This paper presents the numerical simulation results of heat transfer and friction loss for a rotating two-pass duct with the airfoil-guide vanes in the turning region. The Kriging model is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of flow field and heat transfer with shear stress transport turbulent model. To improve the heat transfer performance, angle and location of the airfoil-guide vanes have been selected as design variables. The optimization problem has been defined as a minimization of the objective function, which is defined as a linear combination of heat transfer related term and friction loss related term with a weight factor. The airfoil-guide vanes in the turning region keep the high level of heat transfer while the friction loss has a low value. By comparing the presence or absence of airfoil-guide vanes, it is shown that the airfoil-guide vanes exhibited the best heat transfer performance to improve the blade cooling except the first passage.

Numerical Analysis of Convective Heat and Mass Transfer around Human Body under Strong Wind

  • Li, Cong;Ito, Kazuhide
    • 국제초고층학회논문집
    • /
    • 제1권2호
    • /
    • pp.107-116
    • /
    • 2012
  • The overarching objective of this study is to predict the convective heat transfer around a human body under forced strong airflow conditions assuming a strong wind blowing through high-rise buildings or an air shower system in an enclosed space. In this study, computational fluid dynamics (CFD) analyses of the flow field and temperature distributions around a human body were carried out to estimate the convective heat transfer coefficient for a whole human body assuming adult male geometry under forced convective airflow conditions between 15 m/s and 25 m/s. A total of 45 CFD analyses were analyzed with boundary conditions that included differences in the air velocity, wind direction and turbulence intensity. In the case of approach air velocity $U_{in}=25m/s$ and turbulent intensity TI = 10%, average convective heat transfer coefficient was estimated at approximately $100W/m^2/K$ for the whole body, and strong dependence on air velocity and turbulence intensity was confirmed. Finally, the formula for the mean convective heat transfer coefficient as a function of approaching average velocity and turbulence intensity was approximated by using the concept of equivalent steady wind speed ($U_{eq}$).

고온 고압 환경에서 가변추력기용 핀틀의 열전달 계수에 대한 수치적 연구 및 2D 실험 (Numerical Analysis and 2-D Experiment of Heat Transfer Coefficient on the Pintle of a Controllable Thruster Nozzle)

  • 박순상;문영기;곽재수
    • 항공우주시스템공학회지
    • /
    • 제6권4호
    • /
    • pp.24-28
    • /
    • 2012
  • In this paper, 2-D experiment and steady-state computational fluid analysis were conducted for measuring the hear transfer coefficient of pintle type controllable thruster in high pressure and temperature. In case of 2-D experiment, transient liquid crystal technique was used for measuring heat transfer coefficient for the 2-D pintle model. The experimental result was used to validate the CFD result. The CFD results well predicted the heat transfer coefficient on the pintle surface except the nozzle downstream region, where the results by CFD was higher than experimental results. The CFD results were also compared with the result by Bartz equation and the it was shown that the Bartz equation overestimated the heat transfer coefficient on the nozzle throat as much as 80%.

엔진실 차폐 시스템의 냉각성능 개선을 위한 수치적 연구 (NUMERICAL STUDY FOR COOLING CAPACITY IMPROVEMENT OF ENGINE ROOM ENCLOSURE SYSTEM)

  • 배이석;유근종;최훈기
    • 한국전산유체공학회지
    • /
    • 제14권2호
    • /
    • pp.39-45
    • /
    • 2009
  • In engine room, proper enclosure system is preferable for reducing noise level but the enclosure system in the engine room causes bad influence on cooling performance due to poor ventilation. Cooling efficiency of the enclosure system can be improved by varying fan speed and proper flow path for ventilation. In this study, numerical analysis is performed to assess cooling effect of the enclosure system using finite volume method. The RNG k-$\varepsilon$ model is adopted for turbulence model along with heat exchanger model and porous media model for heat exchanger analysis, and moving reference frame model for rotational fan. Verification result shows reasonable agreement with experimental data. Analysis results show direct effect of velocity and temperature distribution on cooling ability in the enclosure system. Enclosure system of case B shows high heat transfer coefficient and has the smallest area ratio of opened flow passages which is good for noise level reduction.

엇갈린 다이아몬드형 핀휜의 형상에 따른 난류열전달 성능해석 (ANALYSIS OF TURBULENT HEAT TRANSFER FROM STAGGERED PIN-FIN ARRAYS WITH DIAMOND SHAPED ELEMENTS AT VARIOUS GEOMETRICAL CONFIGURATIONS)

  • 조안태;김광용
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.20-26
    • /
    • 2008
  • A numerical study is carried out to analyze the steady three-dimensional turbulent flow and convective heat transfer in a staggered pin-fin array with diamond shaped elements at various geometrical configurations. Steady Reynolds-averaged Navier-Stokes equations and energy equation are solved using a finite volume based solver. Shear stress transport (SST) model is used as turbulence closure. The computational domain is composed of one pitch of pin-fin displacement with periodic boundary conditions on the surfaces normal to the streamwise direction and the cross-streamwise direction. The numerical results for Nusselt number and friction factor are validated with experimental results. The effects of pin angle, pin height and pitch on Nusselt number, friction factor and efficiency index are investigated.

판형 열교환기 Full-scale 해석을 위한 1차원 유동 네트워크 모델 및 ε-NTU 모델의 수치적 연구 (NUMERICAL STUDY FOR THE FULL-SCALE ANALYSIS OF PLATE-TYPE HEAT EXCHANGER USING ONE-DIMENSIONAL FLOW NETWORK MODEL and ε-NTU METHOD)

  • 김민성;민준기;하만영
    • 한국전산유체공학회지
    • /
    • 제19권1호
    • /
    • pp.47-56
    • /
    • 2014
  • Since a typical plate heat exchanger is made up of a huge number of unitary cells, it may be impossible to predict the aero-thermal performance of the full scale heat exchanger through three-dimensional numerical simulation due to the enormous amount of computing resources and time required. In the present study, a simple flow-network model using the friction factor correlation and a thermal-network model based on the effectiveness-number of transfer units (${\varepsilon}$-NTU) method has been developed. The complicated flow pattern inside the cross-corrugated heat exchanger has been modeled into flow and thermal networks. Using this model, the heat transfer between neighboring streams can be considered, and the pressure drop and the heat transfer rate of full-scale heat exchanger matrix are calculated. In the calculation, the aero-thermal performance of each unitary cell of the heat exchanger matrix was evaluated using correlations of the Fanning friction factor f and the Nusselt number Nu, which were calculated by unitary-cell CFD model.

SWNT 투명박막히터의 열성능 평가를 위한 자유대류 열전달 해석 (A COMPUTATIONAL STUDY ON FREE CONVECTION FOR THERMAL PERFORMANCE EVALUATION OF A SWNT THIN-FILM HEATER)

  • 곽호상;이성은;박경석;김경진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.315-320
    • /
    • 2009
  • A computational investigation is conducted on free convection from a thin plate having a surface heat source. The thermal configuration simulates the recently-proposed transparent film heater made of a single-walled carbon nanotube film on a glass substrate. The Navier-Stokes computations are carried out to study laminar free convection from the heater. Parallel numerical experiments are performed by using a simplified design analysis model which solve the conduction equation with the boundary conditions utilizing several existing correlations for convective heat transfer coefficient. Comparison leads to the most suitable boundary condition for the thermal model to evaluate the performance evaluation of a transparent thin-film heater.

  • PDF