• Title/Summary/Keyword: Computational heat transfer analysis

Search Result 399, Processing Time 0.044 seconds

Prediction of Microstructure Evolution and Hardness Distribution in the Weld Repair of Carbon Steel Pipeline

  • Li, V.;Kim, D.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.1-6
    • /
    • 2002
  • This article presents an integrated modeling approach for coupled analysis of heat transfer and microstructure evolution in welding carbon steel. The modeling procedure utilizes commercial finite element code ABAQUS/Standard as the platform for solving the equation of heat conduction. User subroutines that Implement computational thermodynamics and kinetics models are integrated with the FEA code to compute the transient microstructure evolution. In this study, the integrated models are applied to simulate the hot-tap repair welding of carbon steel pipeline. Microstructural components are treated as user output variables. Based on the predicted microstructure and cooling rates, hardness distributions in the welds were also predicted. The predicted microstructure and hardness distribution were found in good agreement with metallographic examinations and hardness measurements. This study demonstrates the applicability of computational models for the development of welding procedure for in-service pipeline repair.

  • PDF

Anti-icing Method of Heated Walkway in Ice Class Ships: Efficiency Verification of CNT-based Surface Heating Element Method Through Numerical Analysis

  • Woo-Jin Park;Dong-Su Park;Mun-Beom Shin;Young-Kyo Seo
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.215-224
    • /
    • 2023
  • While melting glaciers due to global warming have facilitated the development of polar routes, Arctic vessels require reliable anti-icing methods to prevent hull icing. Currently, the existing anti-icing method, i.e., the heating coil method, has disadvantages, such as disconnection and power inefficiency. Therefore, a carbon nanotube-based surface heating element method was developed to address these limitations. In this study, the numerical analysis of the surface heating element method was performed using ANSYS. The numerical analysis included conjugate heat transfer and computational fluid dynamics to consider the conduction solids and the effects of wind speed and temperature in cold environments. The numerical analysis method of the surface heating element method was validated by comparing the experimental results of the heating coil method with the numerical analysis results (under the -30 ℃ conditions). The surface heating element method demonstrated significantly higher efficiency, ranging from 56.65-80.17%, depending on the conditions compared to the heating coil method. Moreover, even under extreme environmental conditions (-45 ℃), the surface heating element method satisfied anti-icing requirements. The surface heating element method is more efficient and economical than the heating coil method. However, proper heat flux calculation for environmental conditions is required to prevent excessive design.

A Numerical Study of Trasient Behavior In a Monolithic Catalytic Converter (일체형 촉매변환기의 비정상 거동의 수치해석적 연구)

  • Bae S. S.;Kang D. J.;Kim S. Y.;Lim M. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.76-81
    • /
    • 1995
  • A numerical procedure for the analysis of transient behavior in a monolithic catalytic converter is presented. The thermal behavior of a monolithic catalytic converter is fully coupled with mass transfer and exothermic reaction between exhaust gases and the catalytic converter. In the present study, all these processes are solved simultaneously. The heat transfer process is approximated by combinging one dimensional convection and conduction and the chemical reaction is also simply modelled by using the concepts of reaction rate and reaction heat. All the partial diffenrential equations for the heat transfer, mass transfer and chemical reactions are appximated by using finite volume method. Resulting algebraic equations are solved using the Newton's method. To see the workability of present numerical method, two well known problems, say step increase and step decrease in the gas inlet temperature, have been calculated. Comparion of present solutions with previous solutions shows a good agreement.

  • PDF

A Study On Heat Transfer and Flow Characteristics for Boring in Sewer by Rotating Cutter Tool (회전노즐장비 작동시 하수관내의 열전달 및 유동현상에 관한 연구)

  • Park Young-Ki;Lee Jang-Choon;Lee Dong-Joo
    • Journal of Environmental Science International
    • /
    • v.15 no.1
    • /
    • pp.95-100
    • /
    • 2006
  • Heat transfer and flow characteristics in a pipe in which the rotating cutting tool for boring a underground pipe without digging were considered in this study. The amount of heat generation due to the friction between the rotating cutter and pipe wall, mixing (low of air and water injected to cool down are the two important factors to design the boring machine Computational fluid dynamics analysis using the Eulerian mixture model and the standard $\kappa-\varepsilon$ turbulence model was used to analyze the complex phenomena in a pipe during the process. Results show that pipe wall temperature decreased with increasing the cooling water inlet velocity. it is also shown that pipe wail temperature was lowered when the cutter rotation speed was increased until 600 rpm. There was no further cooling effect over 600 rpm.

STUDY ON HEAT TRANSFER CHARACTERISTICS OF THE ONE SIDE-HEATED VERTICAL CHANNEL WITH INSERTED POROUS MATERIALS APPLIED AS A VESSEL COOLING SYSTEM

  • KURIYAMA, SHINJI;TAKEDA, TETSUAKI;FUNATANI, SHUMPEI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.534-545
    • /
    • 2015
  • In the very high temperature reactor (VHTR), which is a next generation nuclear reactor system, ceramics are used as a fuel coating material and graphite is used as a core structural material. Even if a depressurization accident occurs and the reactor power goes up instantly, the temperature of the core will change only slowly. This is because the thermal capacity of the core is so high. Therefore, the VHTR system can passively remove the decay heat of the core by natural convection and radiation from the surface of the reactor pressure vessel. The objectives of this study are to investigate the heat transfer characteristics of natural convection of a one-side heated vertical channel with inserted porous materials of high porosity and also to develop the passive cooling system for the VHTR. An experiment was carried out using a one-side heated vertical rectangular channel. To obtain the heat transfer and fluid flow characteristics of the vertical channel with inserted porous material, we have also carried out a numerical analysis using a commercial Computational Fluid Dynamics (CFD) code. This paper describes the thermal performances of the one-side heated vertical rectangular channel with an inserted copper wire of high porosity.

Numerical Study on Various Ribs in a Triangular Internal Cooling Channel (삼각형 내부냉각유로에 설치된 다양한 형태의 리브에 관한 수치해석적 연구)

  • Park, Min-Jung;Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.19-26
    • /
    • 2012
  • In this paper, a parametric study on ribs which are installed in an equilateral triangular internal cooling channel is presented. The numerical analysis of the flow structure and heat transfer characteristics is performed using three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model. The numerical results are obtained at Reynolds number, 20,000. The parametric study is performed for the parameters, the angle of a rib, rib pitch-to-hydraulic diameter ratio, rib width-to-hydraulic diameter ratio, and rib height-to-hydraulic diameter ratio. The computational results are validated with the experimental data for area-averaged Nusselt number.

Three Dimensional Numerical Analysis of the Walking Beam Type of a Hot Roll Reheat Furnace (Walking Beam형 열연 재가열로의 3차원 수치해석)

  • Kim J. K.;Huh G. Y.;Kim I. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.199-204
    • /
    • 1999
  • Three dimensional numerical analysis for the turbulent reactive flow and radiative heat transfer in the walking beam type of a reheat furnace in POSCO has been carried out by the industrial code FLUENT. Computations an based on the conservation equations of mass, momentum, energy and species with the $k-{\varepsilon}$ turbulence model and mixture fraction/PDF(Probability Density Function) approach for the combustion rate. Radiative heat transfer is computed by the discrete ordinates radiation model in combination with the weighted-sum-of-gray-gas model for the absorption coefficient of gas medium. The predicted temperture distribution in the reheat furnace and energy flow fractions are in reasonable agreement with the measurement data.

  • PDF

Numerical Analysis of Fluid Flow in a Regenerative Cooling Passage (재생냉각 유로 내의 유동에 관한 수치해석)

  • 조원국
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.46-52
    • /
    • 2000
  • A computational analysis has been made on fluid flow in a regenerative cooling Passage for a reduced size liquid rocket engine to predict pressure drop and heat transfer rate in it. The contraction/expansion of the cross sectional area of the passage turn out to increases both the pressure loss and the heat transfer rate of the duct. The changes of the cross sectional area near the nozzle throat are effective to protect the throat which suffers from severe thermal load. Also given is the qualitative characteristics of the performance of the regenerative cooling system due to the variation of coolant flow rate.

  • PDF

Analysis of Conjugated Heat Transfer for the Diffuser Exposed to Hot Combustion Gas (고온 연소가스에 노출되는 디퓨저의 복합 열전달량 계산)

  • Jin, Sang-Wook;Na, Jae-Jung;Rhe, Sang-Ho;Lee, Kyu-Jun;Lim, Jin-Shik;Kim, Sung-Don
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.231-234
    • /
    • 2010
  • Analysis of conjugated heat transfer has been conducted for the diffuser exposed to hot combustion gas to design the mechanical durability in high temperature. All the heat transfer means, conduction, convection and radiation have been considered to calculate the total heat flux from hot gas to diffuser surface. The calculation has been implemented by two kinds of methods. One thing is one dimensional method based on empirical equations. The other is CFD(Computational Fluid Dynamics) axisymmetric calculation containing ${\kappa}-{\omega}$ SST(Shear Stress Transport) turbulent model and DO(Discrete Ordinate) radiation model. The derived results of two methods have compared and showed similar values. From this result, the amount of cooling water and the dimension of water cooling channel were decided.

  • PDF

Heat transfer characteristics with materials of the filler and flow path in vehicle washer heater system (차량워셔액 가열시스템에서 충전재 및 유로의 재질에 따른 열전달 특성 연구)

  • Cha, Woo Sub;Kim, Tae Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2628-2634
    • /
    • 2014
  • Vehicle washer heater system is more widely adopted to defrost a window or to clear the windshield glass in winter season. The washer heater system should be designed to heat up washer fluid rapidly to the target temperature for only a short time. A numerical analysis has been carried out to analyze the heat transfer characteristics with materials of inside parts in vehicle washer heater system with filler and flow path. ANSYS - FLUENT software is employed for the analysis. The axial symmetry model is three-dimensional and unsteady. It applies to the coupled method which is one of pressure based. Through this result, it was obtained to find the optimal material condition for the filler and flow path in washer system. For material of filler, the air with lower density was heated more rapidly rather than silicon carbide(SiC). For material of flow path, copper with the heat transfer coefficient of approximately four times greater than the nickel gives us higher efficiency. That is the reason why the heating time of methanol was reduced to make uniform temperature in washer heater system.