• Title/Summary/Keyword: Computational fluid dynamic analysis

Search Result 309, Processing Time 0.034 seconds

An efficient three-dimensional fluid hyper-element for dynamic analysis of concrete arch dams

  • Lotfi, Vahid
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.683-698
    • /
    • 2006
  • The accurate dynamic analysis of concrete arch dams relies heavily on employing a three-dimensional semi-infinite fluid element. The usual method for calculating the impedance matrix of this fluid hyper-element is dependent on the solution of a complex eigen-value problem for each frequency. In the present study, an efficient procedure is proposed which simplifies this procedure amazingly, and results in great computational time saving. Moreover, the accuracy of this technique is examined thoroughly and it is concluded that efficient procedure is incredibly accurate under all practical conditions.

Study on a Method of Considering the Fluid Induced External Force in Structural Dynamic Analysis (구조동역학 해석 시 유체유동에 의한 외력을 고려하는 방법에 관한 연구)

  • Seo, Seok;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.661-665
    • /
    • 2000
  • A method of considering the fluid induced external force in structural dynamic analysis is presented in this study. The fluid induced pressure distribution around a structure in discrete number of orientation. and velocity is calculated by using a CFD code and tabulated as resultant forces and moments in a database. These forces and moments are interpolated and employed as external forces during the dynamic analysis of structure. The reliability and usefulness of the present method is validated by using a simple discrete system example through transient analysis. The flutter speed is obtained and compared to the analytical solution. Comparing to the method in which structural dynamic and fluid flow analyses are performed simultaneously, the present method is very efficient to save computational effort.

  • PDF

NUMERICAL FLOW FIELD ANALYSIS OF AN ARCJET THRUSTER (Arcjet Thruster 유동의 전산해석)

  • Shin, Jae-Ryul;Choi, Jeong-Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.101-105
    • /
    • 2006
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant Hydrazine (N2H4) as a working fluid. The Reynolds Averaged Navier-Stokes (RANS) equations are modified to analyze compressible flows with the thermal radiation and electric field. The Maxwell equation, which is loosely coupled with the fluid dynamic equations through the Ohm heating and Lorentz forces, is adopted to analyze the electric field induced by the electric arc. The chemical reactions of Hydrazine were assumed to be infinitely fast due to the high temperature field inside the arcjet thruster. The chemical and the thermal radiation models for the nitrogen-hydrogen mixture and optically thick media respectively, were incorporated with the fluid dynamic equations. The results show that performance indices of the arcjet thruster with 1kW arc heating are improved by amount of 180% in thrust and 200% in specific impulse more than frozen flow. In addition to thermo-physical process inside the arcjet thruster is understood from the flow field results.

  • PDF

Earthquake Response Analysis for 2-D Fluid-Structure-Soil Systems (2차원 유체-구조뭍-지반계의 지진응답해석)

  • 윤정방;장수혁;김재민;홍선기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.289-296
    • /
    • 2000
  • This paper presents a method of seismic analysis for a 2-D fluid-structure-soil interaction systems. With this method, the fluid can be modeled by spurious free 4-node displacement-based fluid elements which use rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and the near-field soil are discretized by the standard 2-D finite elements, while the unbounded far-field soil is represented by the dynamic infinite elements in the frequency domain. Since this method directly models the fluid-structure-soil interaction systems, it can be applied to the dynamic analysis of a 2-D liquid storage structure with complex geometry. Finally, results of seismic analyses are presented for a spent fuel storage tank embedded in a layered half-space and a massive concrete dam on a layered half-space.

  • PDF

Dynamic Analysis of a Rotating Blade Considering the Fluid Induced Exteral Force (유체유동에 의한 외력을 고려한 회전 블레이드의 동역학적 거동해석)

  • Seo, Seok;Yu, Hong-Hui;Yun, Jun-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2259-2265
    • /
    • 2000
  • A dynamic modeling of a rotating pretwist blade which interacts with the fluid is proposed in this study. The hybrid deformation variable modeling method is employed to derive the equations of motion. The external force and moment induced by the fluid (with fixed configurations of the blade) are obtained by fluid flow analysis and tabulated in a database. This database is efficiently utilized to save the computational effort to calculate the dynamic response of the blade. The numerical results show that the fluid affects the transient response as well as frequency characteristics of the system.

Numerical investigation of turbulent lid-driven flow using weakly compressible smoothed particle hydrodynamics CFD code with standard and dynamic LES models

  • Tae Soo Choi;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3367-3382
    • /
    • 2023
  • Smoothed Particle Hydrodynamics (SPH) is a Lagrangian computational fluid dynamics method that has been widely used in the analysis of physical phenomena characterized by large deformation or multi-phase flow analysis, including free surface. Despite the recent implementation of eddy-viscosity models in SPH methodology, sophisticated turbulent analysis using Lagrangian methodology has been limited due to the lack of computational performance and numerical consistency. In this study, we implement the standard and dynamic Smagorinsky model and dynamic Vreman model as sub-particle scale models based on a weakly compressible SPH solver. The large eddy simulation method is numerically identical to the spatial discretization method of smoothed particle dynamics, enabling the intuitive implementation of the turbulence model. Furthermore, there is no additional filtering process required for physical variables since the sub-grid scale filtering is inherently processed in the kernel interpolation. We simulate lid-driven flow under transition and turbulent conditions as a benchmark. The simulation results show that the dynamic Vreman model produces consistent results with experimental and numerical research regarding Reynolds averaged physical quantities and flow structure. Spectral analysis also confirms that it is possible to analyze turbulent eddies with a smaller length scale using the dynamic Vreman model with the same particle size.

The Design and Analysis of Composite Advanced Propeller Blade for Next Generation Turboprop Aircraft (차세대 터보프롭 항공기용 복합재 최신 프로펠러 설계 및 해석)

  • Choi, Won;Kim, Kwang-Hae;Lee, Won-Joong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.11-17
    • /
    • 2012
  • The one way fluid structure interaction analysis on advanced propeller blade for next generation turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point. Blade sweep is designed based on the design mach number and target propulsion efficiency. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and showed the enhanced performance than the conventional propeller. The skin-foam sandwich structural type is adopted for blade. The high stiffness, strength carbon/epoxy composite material is used for the skin and PMI(Polymethacrylimide) is used for the foam. Aerodynamic load is calculated by computational fluid dynamics. Linear static stress analysis is performed by finite element analysis code MSC.NASTRAN in order to investigate the structural safety. The result of structural analysis showed that the design has sufficient structural safety. It was concluded that structural safety assessment should incorporate the off-design points.

Transonic Aeroelastic Analysis of Business Jet Aircraft Wing Model (비즈니스 제트 항공기 날개의 천음속 공탄성 해석)

  • Kim, Yo-Han;Kim, Dong-Hyun;Tran, Thanh-Toan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.299-299
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses have been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF

The Effect of Fluid-Structure Interaction on the Dynamic Response of Reactor Internals (유체-구조물 상호작용이 원자로내부구조물의 동적응답에 미치는 영향)

  • 정명조;박찬국;황원걸
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.73-82
    • /
    • 1993
  • Investigated in this paper is the effect of fluid-structure interaction between reactor internal components due to their immersion in a confining fluid on the dynamic responses. A non-linear mathematical model is developed for the dynamic analysis of the reactor internals, which includes lumped masses, stiffnesses and hydrodynamic couplings. The hydrodynamic mass matrix which characterizes the fluid-structure interaction is calculated. Also, the equations of motion containing hydrodynamic mass matrix are presented. The responses of the reactor internals due to seismic and pipe break excitations are obtained for the case of with- and without-hydrodynamic couplings and the different response characteristics are investigated.

  • PDF

A Study on the Characteristic Micro-Climate in the City using Computerized Fluid Analysis and Actual Measurement (전산유체해석과 실측을 이용한 도심내 미기후 특성에 대한 연구)

  • You, Jang-Youl;Park, Min-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.35-43
    • /
    • 2023
  • Microclimate analysis was conducted through actual measurement according to land use status in urban, and CFD analysis was conducted to analyze and predict the microclimate characteristics of urban, and compared and analyzed with the actual measurement results. It was measured in high-rise areas and parks, and the temperature of the park area was 0.4 to 0.6℃ lower, and the relative humidity was 1.0 to 3.0% higher. The correlation coefficient was obtained by comparing the results of the computational fluid analysis with the results of the computational fluid analysis at the actual location located within the CFD analysis area for validation. The seasonal correlation coefficients are all higher than 0.8, so it is judged that they can be applied to microclimate analysis in urban area. The computational fluid analysis was divided into three areas (low-rise, low and high-rise, and high-rise) centered on the A2 point. On average, the low-rise area was 0.1 to 0.4% higher than the high-rise area. In the low and high-rise area and high-rise area, the pith of buildings are wide, so the airflow is smooth, so it is judged that the temperature is relatively low.