• Title/Summary/Keyword: Computational fluid dynamic (CFD)

Search Result 267, Processing Time 0.029 seconds

Understanding the Use of Coal Char Kinetic Models in commercial CFD Codes (상용 CFD 코드에서 사용되는 촤 반응속도 모델에 대한 이해)

  • Kim, Daehee;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.91-94
    • /
    • 2013
  • Commercial computational fluid dynamics (CFD) codes traditionally rely on the computational efficiency of the simplified single-film apparent char kinetic model to predict char particle temperatures and char conversion rates in pulverized coal boilers. The aim of this study is to evaluate the reliability of the single-film apparent kinetic model and to suggest the importance of proper use of this model. For this, a parametric study was conducted with a consideration of main parameters such as Stefan flow, product species, particle evolution, and kinetic parameters.

  • PDF

On the Proper Use of Char Reaction Kinetic Model in CFD Code for Oxy-PC Combustion (순산소 미분탄 연소 CFD 연구에 사용되는 촤 반응속도 모델의 적절한 사용에 대한 연구)

  • Kim, Daehee;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.67-70
    • /
    • 2012
  • Many computational fluid dynamic (CFD) simulations have treated the coal kinetics poorly due to large physical domain sizes and high computational complexity, particularly for the recent oxy-coal boilers. Furthermore, some modelers' lack of understanding of the kinetic rate model seems to worsen the simulation accuracy. This study is to suggest the importance of proper use of single-film global kinetic model generally used in CFD code to describe the oxy-fuel combustion of coal char through simple char burnout calculation.

  • PDF

CFD - Mature Technology?

  • Kwak, Do-Chan
    • Proceedings of the KSME Conference
    • /
    • 2005.11a
    • /
    • pp.257-261
    • /
    • 2005
  • Over the past 30 years, numerical methods and simulation tools for fluid dynamic problems have advanced as a new discipline, namely, computational fluid dynamics (CFD). Although a wide spectrum of flow regimes are encountered in many areas of science and engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This Is probably due to a large demand for predicting the aerodynamic performance characteristics of flight vehicles, such as commercial, military, and space vehicles. As flow analysis is required to be more accurate and computationally efficient for both commercial and mission-oriented applications (such as those encountered in meteorology, aerospace vehicle development, general fluid engineering and biofluid analysis) CFD tools for engineering become increasingly important for predicting safety, performance and cost. This paper presents the author's perspective on the maturity of CFD, especially from an aerospace engineering point of view.

  • PDF

CFD modelling and the development of the diffuser augmented wind turbine

  • Phillips, D.G.;Richards, P.J.;Flay, R.G.J.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.267-276
    • /
    • 2002
  • Research being undertaken at the University of Auckland has enabled Vortec Energy to improve the performance of the Vortec 7 Diffuser Augmented Wind Turbine. Computational Fluid Dynamic (CFD) modelling of the Vortec 7 was used to ascertain the effectiveness of geometric modifications to the Vortec 7. The CFD work was then developed to look at new geometries, and refinement of these led to greater power augmentation for a given diffuser exit area ratio. Both full scale analysis of the Vortec 7 and a wind tunnel investigation of the development design have been used for comparison with the CFD model.

Design and Performance Analysis of Mixed-Flow Pumps for Waterjet Marine Propulsion (워터제트 선박추진용 사류펌프의 설계 및 성능해석)

  • Yoon, Eui-Soo;Oh, Hyoung-Woo;Ahn, Jong-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.2 s.19
    • /
    • pp.41-46
    • /
    • 2003
  • The hydraulic design optimization and performance analysis of mixed-flow pumps for waterjet marine vehicle propulsion has been carried out using mean streamline analysis and three-dimensional computational fluid dynamics (CFD) code. In the present study, the conceptual design optimization has been formulated with a non-linear objective function to minimize the fluid dynamic losses, and then the commercial CFD code was incorporated to allow for detailed flow dynamic phenomena in the pump system. Newly designed mixed-flow model pump has been tested in the laboratory. Predicted performance curves by the CFD code agree very well with experimental data for a newly designed mixed-flow pump over the normal operating conditions. The design and prediction method presented herein can be used efficiently as a unified hydraulic design process of mired-flow pumps for waterjet marine vehicle propulsion.

Computational Fluid Dynamic Analysis for Improving the Efficiency of Desulfurization System for the Wet Flue Gas (습식 배연탈황 시스템의 효율 향상을 위한 전산해석)

  • Hwang, Woo-Hyeon;Lee, Kyung-Ok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.161-171
    • /
    • 2014
  • In this paper the flow dynamics of the flue gas equipment in the desulfurization system was numerically analyzed by simulating the problems for the turbulent and combustion flow from Induced Draft Fan(I.D.Fan) outlet to Booster Up Fan(B.U.Fan) inlet using the commercial CFD software of CFD-ACE+ in CFDRC company for Computational Fluid Dynamic Analysis. The guide vane of this section was examined for the minimum pressure loss and the uniform flow dynamic to B.U.Fan with the proper velocity from I.D,Fan exit to B,U,Fan inlet section at the boiler both the maximum continuous rating and the design base. The guide vanes at I,D.Fan outlet and B.U.Fan inlet were removed and modified by numerical simulation of the CFD analysis. The flue gas at the system had the less pressure loss and the uniform flow dynamics of the flow velocity and flow line by comparing with the old design equipment.

Virtual maneuvering test in CFD media in presence of free surface

  • Hajivand, Ahmad;Mousavizadegan, S. Hossein
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.540-558
    • /
    • 2015
  • Maneuvering oblique towing test is simulated in a Computational Fluid Dynamic (CFD) environment to obtain the linear and nonlinear velocity dependent damping coefficients for a DTMB 5512 model ship. The simulations are carried out in freely accessible OpenFOAM library with three different solvers, rasInterFoam, LTSInterFoam and interDyMFoam, and two turbulence models, $k-{\varepsilon}$ and SST $k-{\omega}$ in presence of free surface. Turning and zig-zag maneuvers are simulated for the DTMB 5512 model ship using the calculated damping coefficients with CFD. The comparison of simulated results with the available experimental shows a very good agreement among them.

Virtual Flutter Test of Spanwise Curved Wings Using CFD/CSD Coupled Dynamic Method (CFD/CSD 정밀 연계해석기법을 이용한 3차원 곡면날개의 가상 플러터 시험)

  • Kim, Dong-Hyun;Oh, Se-Won;Kim, Hyun-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.457-464
    • /
    • 2005
  • The coupled time-integration method with a staggered algorithm based on computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD) has been developed in order to demonstrate physical vibration phenomena due to dynamic aeroelastic excitations. Virtual flutter tests for the spanwise curved wing model have been effectively conducted using the present advanced computational methods with high speed parallel processing technique. In addition, the present system can simultaneously give a recorded data fie to generate virtual animation for the flutter safety test. The results for virtual flutter test are compared with the experimental data of wind tunnel test. It is shown from the results that the effect of spanwise curvature have a tendency to decrease the flutter dynamic pressure for the same flight condition.

  • PDF

Study on a Method of Considering the Fluid Induced External Force in Structural Dynamic Analysis (구조동역학 해석 시 유체유동에 의한 외력을 고려하는 방법에 관한 연구)

  • Seo, Seok;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.661-665
    • /
    • 2000
  • A method of considering the fluid induced external force in structural dynamic analysis is presented in this study. The fluid induced pressure distribution around a structure in discrete number of orientation. and velocity is calculated by using a CFD code and tabulated as resultant forces and moments in a database. These forces and moments are interpolated and employed as external forces during the dynamic analysis of structure. The reliability and usefulness of the present method is validated by using a simple discrete system example through transient analysis. The flutter speed is obtained and compared to the analytical solution. Comparing to the method in which structural dynamic and fluid flow analyses are performed simultaneously, the present method is very efficient to save computational effort.

  • PDF

Dynamic Response Analyses of Fixed Type Substructures for 2.5MW Class Offshore Wind Turbine

  • Song, Chang Yong;Yoo, Jaehoon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.15-24
    • /
    • 2017
  • This paper explores a series of numerical simulations of dynamic responses of multi-piles (dolphin) type substructures for 2.5MW class offshore wind turbine. Firstly computational fluid dynamics (CFD) simulation was performed to evaluate wave loads on the dolphin type substructures with the design wave condition for the west-south region of Korea. Numerical wave tank (NWT) based on CFD was adopted to generate numerically a progressive regular wave using a virtual piston type wave maker. It was found that the water-piercing area of piles of the substructure is a key parameter determining the wave load exerted in horizontal direction. In the next the dynamic structural responses of substructure members under the wave load were calculated using finite element analysis (FEA). In the FEA approach, the dynamic structural responses were able to be calculated including a deformable body effect of substructure members when wave load on each member was determined by Morison's formula. The paper numerically identifies dynamic response characteristics of dolphin type substructures for 2.5MW class offshore wind turbine.