• 제목/요약/키워드: Computational Vibration Analysis

검색결과 573건 처리시간 0.03초

받음각을 갖는 평판보의 유동 여기진동에 관한 연구 (A Study on Flow Induced Vibration of Cantilever Plate with Angle of Attack)

  • 이기백;손창민;김봉환
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1919-1932
    • /
    • 1991
  • 본 연구에서는 고강도 알루미늄 합금으로 제작된 평판보의 받음각(.alpha.)를 10˚ 에서 30˚까지 10˚씩 변화시킨 3가지의 모델에 대해, 각 모델의 Re$_{d}$수 변화에 대한 후류의 스펙트럼분석, 레이저 도플러 유속계(laser doppler velocimetry)를 이용 한 유동장 해석 및 평판보의 응답을 실험을 통해 조사, 분석하고 유동장과 측정이 용 이하지 않은 얇은 평판주위의 압력분포에 대한 전산해석을 수행함으로써 유동 여기진 동 구조의 규명을 시도하였다.다.

Bending and free vibration analysis of laminated piezoelectric composite plates

  • Zhang, Pengchong;Qi, Chengzhi;Fang, Hongyuan;Sun, Xu
    • Structural Engineering and Mechanics
    • /
    • 제75권6호
    • /
    • pp.747-769
    • /
    • 2020
  • This paper provides a semi-analytical approach to investigate the variations of 3D displacement components, electric potential, stresses, electric displacements and transverse vibration frequencies in laminated piezoelectric composite plates based on the scaled boundary finite element method (SBFEM) and the precise integration algorithm (PIA). The proposed approach can analyze the static and dynamic responses of multilayered piezoelectric plates with any number of laminae, various geometrical shapes, boundary conditions, thickness-to-length ratios and stacking sequences. Only a longitudinal surface of the plate is discretized into 2D elements, which helps to improve the computational efficiency. Comparing with plate theories and other numerical methods, only three displacement components and the electric potential are set as the basic unknown variables and can be represented analytically through the transverse direction. The whole derivation is built upon the three dimensional key equations of elasticity for the piezoelectric materials and no assumptions on the plate kinematics have been taken. By virtue of the equilibrium equations, the constitutive relations and the introduced set of scaled boundary coordinates, three-dimensional governing partial differential equations are converted into the second order ordinary differential matrix equation. Furthermore, aided by the introduced internal nodal force, a first order ordinary differential equation is obtained with its general solution in the form of a matrix exponent. To further improve the accuracy of the matrix exponent in the SBFEM, the PIA is employed to make sure any desired accuracy of the mechanical and electric variables. By virtue of the kinetic energy technique, the global mass matrix of the composite plates constituted by piezoelectric laminae is constructed for the first time based on the SBFEM. Finally, comparisons with the exact solutions and available results are made to confirm the accuracy and effectiveness of the developed methodology. What's more, the effect of boundary conditions, thickness-to-length ratios and stacking sequences of laminae on the distributions of natural frequencies, mechanical and electric fields in laminated piezoelectric composite plates is evaluated.

External Flow and Cabin Interior Noise Analysis of Hyundai Simple Model by Coupling CAA++ and ACTRAN

  • Kim, Young Nam;Chae, Jun Hee;Jachmot, Jonathan;Jeong, Chan Hee
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.291-291
    • /
    • 2013
  • The interior vehicle noise due to the exterior aerodynamic field is an important topic in the acoustic design of a car. The air flow detached from the A-pillar and impacting the side windows are of particular interest as they are located close to the driver / passenger and provides a lower insulation index than the trimmed car body parts. HMC is interested in the numerical prediction of this aerodynamic noise generated by the car windows with the final objective of improving the products design and reducing this noise. The methodology proposed in this paper relies on two steps: the first step involves the computation of the exterior flow and turbulence induced non-linear acoustic field using the CAA(Computational aeroacoustics) solver CAA++. The second step consists in the computation of the vibro-acoustic transmission through the side window using the finite element vibro-acoustic solver Actran. The internal air cavity including trim component are included in the simulation. In order to validate the numerical process, an experimental set-up has been created based on a generic car shape. The car body includes the windshield and two side windows. The body is made of aluminum and trimmed with porous layers. First, this paper describes the method including the CAA and the vibro-acoustic models, from the boundary conditions to the different components involved, like the windows, the trims and the car cavity is detailed. In a second step, the experimental set-up is described. In the last part, the vibration of the windshield and windows, the total wind noise level results and the relative contributions of the different windows are then presented and compared to measurements. The influence of the flow yaw angle (different wind orientation) is also assessed.

  • PDF

Finite element-based software-in-the-loop for offline post-processing and real-time simulations

  • Oveisi, Atta;Sukhairi, T. Arriessa;Nestorovic, Tamara
    • Structural Engineering and Mechanics
    • /
    • 제67권6호
    • /
    • pp.643-658
    • /
    • 2018
  • In this paper, we introduce a new framework for running the finite element (FE) packages inside an online Loop together with MATLAB. Contrary to the Hardware-in-the-Loop techniques (HiL), in the proposed Software-in-the-Loop framework (SiL), the FE package represents a simulation platform replicating the real system which can be out of access due to several strategic reasons, e.g., costs and accessibility. Practically, SiL for sophisticated structural design and multi-physical simulations provides a platform for preliminary tests before prototyping and mass production. This feature may reduce the new product's costs significantly and may add several flexibilities in implementing different instruments with the goal of shortlisting the most cost-effective ones before moving to real-time experiments for the civil and mechanical systems. The proposed SiL interconnection is not limited to ABAQUS as long as the host FE package is capable of executing user-defined commands in FORTRAN language. The focal point of this research is on using the compiled FORTRAN subroutine as a messenger between ABAQUS/CAE kernel and MATLAB Engine. In order to show the generality of the proposed scheme, the limitations of the available SiL schemes in the literature are addressed in this paper. Additionally, all technical details for establishing the connection between FEM and MATLAB are provided for the interested reader. Finally, two numerical sub-problems are defined for offline and online post-processing, i.e., offline optimization and closed-loop system performance analysis in control theory.

Non linear vibrations of stepped beam systems using artificial neural networks

  • Bagdatli, S.M.;Ozkaya, E.;Ozyigit, H.A.;Tekin, A.
    • Structural Engineering and Mechanics
    • /
    • 제33권1호
    • /
    • pp.15-30
    • /
    • 2009
  • In this study, the nonlinear vibrations of stepped beams having different boundary conditions were investigated. The equations of motions were obtained by using Hamilton's principle and made non dimensional. The stretching effect induced non-linear terms to the equations. Natural frequencies are calculated for different boundary conditions, stepped ratios and stepped locations by Newton-Raphson Method. The corresponding nonlinear correction coefficients are also calculated for the fundamental mode. At the second part, an alternative method is produced for the analysis. The calculated natural frequencies and nonlinear corrections are used for training an artificial neural network (ANN) program which has a multi-layer, feed-forward, back-propagation algorithm. The results of the algorithm produce errors less than 2.5% for linear case and 10.12% for nonlinear case. The errors are much lower for most cases except clamped-clamped end condition. By employing the ANN algorithm, the natural frequencies and nonlinear corrections are easily calculated by little errors, and the computational time is drastically reduced compared with the conventional numerical techniques.

DVD 드라이브내에서 발생하는 유동소음에 관한 수치적 연구 (A Numerical Study on the Characteristic of Aeroacoustic Noise in DVD Drive)

  • 유승원;이종수;민옥기
    • 소음진동
    • /
    • 제11권3호
    • /
    • pp.471-476
    • /
    • 2001
  • This paper focuses on the numerical prediction of airflow-induced sound in DVD drives. As a first step, computational fluid dynamics (CFD) is conducted to evaluate flow field characteristics due to the high-speed disk rotation, and to support the acoustic analysis. Acoustic analogy based on Ffowcs Wi1liams-Hawkings (FW-H) equation is adopted to predict aeroacoustic noise patterns. The integral solution for quadrupole volume source is included to identify the turbulence noise generated inside the DVD tray. The strength of sound pressure revel with respect to rotating speed is discussed to meet upfront demand on the high fidelity product development. The present study also focuses on the noise directivity and examines how much the sound noise is sensitive to change in rotating speed. Near-field noise is strongly affected by the flow field characteristic, which is caused by the complex shape of the tray. For a mid-field, the quadrupole noise play as a counterpart of thickness noise or loading noise, so it generates different sound noise Patterns compared with those in the near field.

  • PDF

초저온 볼 밸브 설계 및 특성 (Design and Characteristics of cryogenic ball valve)

  • 김동수;김명섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.666-671
    • /
    • 2007
  • To acquire the safety along with durability of mechanical machinery products, we should consider the structural mechanics such as stress, deformation and dynamic vibration characteristics and identify those important aspects in the stage of preliminary design engineering. This cryogenic ball valve is used to transfer the liquified natural gas which temperature is $-196^{\circ}C$, supplied pressure is $168kg/cm^2$. For the cryogenic ball valve, the assurance of structural integrity and operability are essential to meet not only normal, abnormal loading conditions but also functionality during a seismic event. In this thesis, analytical approach and results using finite element analysis and computational method are herein presented to evaluate the aspects of structural integrity along with operability of cryogenic ball valve. In this study, we designed the high pressure cryogenic ball valve that accomplishes zero leakage by elastic seal at normal temperature and metal seal at high temperature.

  • PDF

NUMERICAL ANALYSIS OF FLOW CHARACTERISTIC WITH DIFFERENT CORNER RADIUS OF SQUARE CYLINDER

  • Gao, Zhefeng;Sohn, Chang-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.315-319
    • /
    • 2010
  • The near wake of square section cylinders with different corner radii is studied by numerical method to investigate the influence of corner radius. Eight models, R/D=0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5 (R is the corner radius and D is the characteristic dimension of the body) at Re=500 were studied. The numerical results of St, CD and CL at R/D=0 and R/D=0.5 were compared with experiments to prove the feasibility and also investigate the trend of flow phenomena by the various radius corners. Results indicate that, as R/D ratio is increased, the Strouha lnumber is increased, the minimum pressure point on the cylinder surface moved own stream. The calculated results shows that between R/D=0.15 to R/D=0.3 have CD and CL.

  • PDF

Numerical analysis of oscillating square cylinder with corner radius

  • Tong, J.F.;Sohn, C.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.316-320
    • /
    • 2008
  • In this paper, the near wake of stationary and transversely oscillating square section cylinders with different corner radii are studied by numerical method to investigate the influence of corner radius. Six models R/D=0,0.1,0.2,0.3,0.4,0.5 (R is the corner radius and D is the characteristic dimension of the body) were studied. It was found that the corner radius of square cylinder significantly influences the flow features around the body both in stationary and oscillating conditions. Results indicate that, as R/D ratio increases, the Strouhal number increases and the separation point decrease for the stationary and oscillating cases.

  • PDF

Numerical analysis of oscillating square cylinder with corner radius

  • Tong, J.F.;Sohn, C.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.316-320
    • /
    • 2008
  • In this paper, the near wake of stationary and transversely oscillating square section cylinders with different corner radii are studied by numerical method to investigate the influence of corner radius. Six models R/D=0,0.1,0.2,0.3,0.4,0.5 (R is the corner radius and D is the characteristic dimension of the body) were studied. It was found that the corner radius of square cylinder significantly influences the flow features around the body both in stationary and oscillating conditions. Results indicate that, as R/D ratio increases, the Strouhal number increases and the separation point decrease for the stationary and oscillating cases.

  • PDF