• Title/Summary/Keyword: Computational Grid Computing

Search Result 131, Processing Time 0.023 seconds

The Analysis of Fire-Driven Flow and Temperature in The Railway Tunnel with Ventilation (환기를 동반한 철도터널 화재 연기유속 및 온도장 해석)

  • Jang, Yong-Jun;Lee, Chang-Hyun;Kim, Hag-Beom;Lee, Woo-Dong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1794-1801
    • /
    • 2008
  • Fire-driven flow and temperature distribution in a ventilated tunnel was analyzed by Large Eddy Simulation using FDS code. The simulated tunnel is 182m length, 5.4m wide and 2.4m height. A pool fire was located 112m from tunnel entrance and was taken as a heat source of $0.89m^2$. The heat is assumed to be released uniformly throughout the whole simulated time. The fire strength was 2.76MW and the fuel burnt was octane. The parallel computational method was employed to accelerate the computing time and manage the large grid points which is not possible to handle in the one CPU. The total grid points used were $2.4{\times}10^6$ and 7 CPUs were used to calculate the momentum and energy equations. The simulated results were well compared with the experiments.

  • PDF

Viscous Flow Analysis around a Blade Section by a Hybrid Scheme Combining a Panel Method and a CFD Method (패널법과 전산유동해석법의 결합을 이용한 날개단면 주위 점성유동 해석)

  • Oh, Jin-An;Lee, Jin-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.355-363
    • /
    • 2013
  • Panel methods are essential tools for analyzing a fluid-flow problem around complex three dimensional bodies, but they lack ability to solve viscous effects. On the other hand, CFD methods are considered as powerful tools for analyzing fluid-flow characteristics including viscosity. However, they also have short falls, requiring more computing time and showing different results depending on the selection of turbulence models and grid systems. In this paper a hybrid scheme combining a panel method and a CFD method is suggested. The scheme adopts a panel method for far-field solution where viscous effects are negligible and a CFD method for the solution of RANS equations in near-field where viscous effects are relatively strong. The intermediate region between the far-field and near-field is introduced where the calculated field point velocities by the panel method are given as boundary velocities for the CFD method. To verify the scheme, calculated results, by a panel method, a CFD method and the hybrid scheme, for a two dimensional foil section are compared. The suggested hybrid scheme gives reasonable results, while computation time and memory can be dramatically reduced. By using the hybrid scheme efforts can be concentrated for the local flow near the leading and trailing edges, by providing more dense grid system, where detailed flow characteristics are required.

Method to Reduce the Time when Identifying RFID Tag by using Computational Grid (계산 그리드를 이용한 대량의 RFID 태그 판별 시간 단축 방법)

  • Shin, Myeong-Sook;Lee, Joon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.547-554
    • /
    • 2010
  • RFID is core technology to lead ubiquitous computing, and attract the notice of the world. It also improves social transparency, creates employment, and invigorates the allied industries. However, The technical characteristic with RFID has some problems with security and privacy. The commercialization of RFID is delayed due to these problems. This paper introduces the technical method to find solutions about an invasion of privacy to be due to introduce RFID system. First, this method applies Hash-Chain proposed by M. Ohkubo and some other researchers. The more tags increase, the more it demands lots of computation time. We divide SPs equally to solve these problems. And then, We'll suggest solutions to shorten the identification time of tag by implementing SPs with multi nodes of Grid environment at the same time. This makes it possible to keep the privacy protection of RFID tag, and process RFID tag in real time at the same time.

Reducing Process Time for RFID Tag Identification on the Grid Environment (그리드 환경에서 RFID 태그 판별 시간 절감을 위한 태그 판별 처리)

  • Shin, Myeong-Sook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1049-1056
    • /
    • 2010
  • Recently RFID system has been adopted in various fields rapidly. However, we should solve the problem of privacy invasion that can be occurred by obtaining information of RFID Tag without any permission for popularization of RFID system. To solve these problems, There is the Ohkubo et al.'s Hash-Chain Scheme which is the safest method. However, this method has a problem that requesting lots of computing process because of creasing numbers of Tag. Therefore We, suggest SP-Division algorithm satisfied with all necessary security of Privacy Protection Scheme and decreased in Tag Identification Time in this paper. And this paper implemented it in time standard finding the first key among the data devided into each nodes. The length of Hash-Chain holds 1000, and the total number of SPs increases 1000, 2000, 3000, and 4000. Comparing tag identification time by the total number of SPs and the number of Nodes with single node, extending the number of nodes to 1, 2, 3 and 4, when the number of nodes is 2, 40% of Performance, when the number of nodes is 3, 56%, and when the number of nodes is 4, 71% is improved.

Parallelization of Probabilistic RoadMap for Generating UAV Path on a DTED Map (DTED 맵에서 무인기 경로 생성을 위한 Probabilistic RoadMap 병렬화)

  • Noh, Geemoon;Park, Jihoon;Min, Chanoh;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.157-164
    • /
    • 2022
  • In this paper, we describe how to implement the mountainous terrain, radar, and air defense network for UAV path planning in a 3-D environment, and perform path planning and re-planning using the PRM algorithm, a sampling-based path planning algorithm. In the case of the original PRM algorithm, the calculation to check whether there is an obstacle between the nodes is performed 1:1 between nodes and is performed continuously, so the amount of calculation is greatly affected by the number of nodes or the linked distance between nodes. To improve this part, the proposed LineGridMask method simplifies the method of checking whether obstacles exist, and reduces the calculation time of the path planning through parallelization. Finally, comparing performance with existing PRM algorithms confirmed that computational time was reduced by up to 88% in path planning and up to 94% in re-planning.

Optimizing the Manifold Design of a Fuel Cell Stack for Uniform Distribution of Reactant Gases within Fuel Cell Channels (연료전지 채널 내 균일한 유량분배를 위한 연료전지 스택의 매니폴드 디자인 최적화 연구)

  • Jo, A-Rae;Kang, Kyung-Mun;Oh, Sung-Jin;Ju, Hyun-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.11-19
    • /
    • 2012
  • The main function of fuel cell manifold is to render reactants distribution as uniform as possible into a fuel cell stack. The purpose of this study is to numerically investigate the effects of stack manifold design on reactants distribution within a fuel cell stack. Four manifold designs with different manifold entrance shapes (expansion or diffuser) and different values of the extra width between the cell outer channel and manifold side wall are considered and applied to the fuel cell stack consisting of 50 cells. Since the fuel cell stack geometry involves several millions of grid points for numerical calculations, a parallel computing methodology is employed to substantially reduce the computational time and overcome the memory requirement. The numerical simulations are carried out and calculated results clearly demonstrate that both the manifold entrance shape and extra width have a substantial influence on manifold performance, controlling the degree of flow separation and entrance length for fully developed flow in the manifold channel. Finally, we suggest the optimum design of fuel cell manifold based on the simulation results.

Optimal Path Search using Variable Heuristic (가변적 휴리스틱을 적용한 최적경로탐색)

  • Lee, Hyoun-Sup;Ahn, Jun-Hwan;Kim, Jin-Doeg
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.206-209
    • /
    • 2005
  • Optimal path search systems to take continuously changed traffic flows into consideration is necessary in order to reduce the cost to get destination. However, to search optimal path in client terminals with low computing power yields high computational cost. Thus, a method with low cost and near optimal path as well is required. In this paper, we propose a path search method using variable heuristic for the sake of reducing operation time. The heuristic is determined by the change of the average speeds of cars located in grid which means a rectangle region.

  • PDF

Numerical investigation on the wave interferences of submerged bodies operating near the free surface

  • Li, Dong;Yang, Qun;Zhai, Lin;Wang, Zhen;He, Chuan-lin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.65-74
    • /
    • 2021
  • A key factor that governs the wave interferences of a submerged body is the dimensionless Froude number. Computational Fluid Dynamics (CFD) is used to describe the resistance force coefficients and the generated waves of two SUBOFF submarine models. Grid independence studies are performed on two cases, totally and shallowly submerged cases, with four sets of computing meshes. The highest peaks are marked by red points at given wavelengths, a line is fitted to those points with a least-squares approximation, and the half wake angle at multiple Froude numbers is defined between the fitted line and the centerline of the free surface. The results show that when the depth of the target is 1.1D, constructive interferences occur at Fn = 0.3 and 0.5, while destructive interference occurs at Fn = 0.35 with distortion of the waveform. The half wake angle is less than 19.47° because of the interference between the bow and stern wave systems.

A Network-Distributed Design Optimization Approach for Aerodynamic Design of a 3-D Wing (3차원 날개 공력설계를 위한 네트워크 분산 설계최적화)

  • Joh, Chang-Yeol;Lee, Sang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.12-19
    • /
    • 2004
  • An aerodynamic design optimization system for three-dimensional wing was developed as a part of the future MDO framework. The present design optimization system includes four modules such as geometry design, grid generation, flow solver and optimizer. All modules were based on commercial softwares and programmed to have automated execution capability in batch mode utilizing built-in script and journaling. The integration of all modules into the system was accomplished through programming using Visual Basic language. The distributed computational environment based on network communication was established to save computational time especially for time-consuming aerodynamic analyses. The distributed aerodynamic computations were performed in conjunction with the global optimization algorithm of response surface method, instead of using usual parallel computation based on domain decomposition. The application of the design system in the drag minimization problem demonstrated considerably enhanced efficiency of the design process while the final design showed reasonable results of reduced drag.

RFID Tag Identification with Scalability Using SP-Division Algorithm on the Grid Environment (그리드 환경에서 SP분할 알고리즘을 이용한 확장성 있는 RFID 태그 판별)

  • Shin, Myeong-Sook;Ahn, Seong-Soo;Lee, Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2105-2112
    • /
    • 2009
  • Recently RFID system has been adopted in various fields rapidly. However, we ought to solve the problem of privacy invasion that can be occurred by obtaining information of RFID Tag without any permission for popularization of RFID system To solve the problems, it is Ohkubo et al.'s Hash-Chain Scheme which is the safest method. However, this method has a problem that requesting lots of computing process because of increasing numbers of Tag. Therefore, We suggest the way (process) satisfied with all necessary security of Privacy Protection Shreme and decreased in Tag Identification Time in this paper. First, We'll suggest the SP-Division Algorithm seperating SPs using the Performance Measurement consequence of each node after framing the program to create Hash-Chain Calculated table to get optimized performance because of character of the grid environment comprised of heterogeneous system. If we compare consequence fixed the number of nodes to 4 with a single node, equal partition, and SP partition, when the total number of SPs is 1000, 40%, 49%, when the total number of SPs is 2000, 42%, 51%, when the total number of SPs is 3000, 39%, 49%, and when the total number of SPs is 4000, 46%, 56% is improved.