• Title/Summary/Keyword: Computational Cost Reduction

Search Result 140, Processing Time 0.025 seconds

Dimensionality Reduction in Speech Recognition by Principal Component Analysis (음성인식에서 주 성분 분석에 의한 차원 저감)

  • Lee, Chang-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.9
    • /
    • pp.1299-1305
    • /
    • 2013
  • In this paper, we investigate a method of reducing the computational cost in speech recognition by dimensionality reduction of MFCC feature vectors. Eigendecomposition of the feature vectors renders linear transformation of the vectors in such a way that puts the vector components in order of variances. The first component has the largest variance and hence serves as the most important one in relevant pattern classification. Therefore, we might consider a method of reducing the computational cost and achieving no degradation of the recognition performance at the same time by dimensionality reduction through exclusion of the least-variance components. Experimental results show that the MFCC components might be reduced by about half without significant adverse effect on the recognition error rate.

A computationally efficient numerical integration scheme for non-linear plane-stress/strain FEM applications using one-point constitutive model evaluation

  • Hector R. Amezcua;Amado G. Ayala
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.89-104
    • /
    • 2023
  • This work presents a proposal for employing reduced numerical integration in the formulation of the 4-node quadrilateral solid finite element. The use of these low-order integration rules leads to numerical instabilities such as those producing the hourglass effect. The proposed procedure allows evaluating a given constitutive model only in one integration point, achieving an attractive computational cost reduction and, also, successfully controls the hourglass effect. A validation of the proposal is included and discussed throughout the paper. To show the efficiency of the proposal, several application examples of masonry structures are studied and discussed. To represent the non-linear mechanical behaviour of masonry a plastic-damage model is implemented within the application of this sub-integration scheme. Also, in order to have a full and computationally efficient strategy to determine the behaviour of masonry structures, involving its evolution to collapse, a homogenization technique with a macro-modeling approach is used. The methodology discussed throughout this paper demonstrates a substantial computational cost reduction and an improved approximation of the non-linear problem evidenced by a reduction of up to 85% of the computational time for some cases.

The Development of an Product Cost Estimation System at the Product Design Stage (제품 설계 단계에서의 제품 원가 추정 시스템 개발)

  • 한관희;박찬우;이규봉;황태일;김강용
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.2
    • /
    • pp.101-108
    • /
    • 2003
  • Presented in this paper is the development of an product cost estimation system at the product design stage. The efficient cost estimation function at the design stage is essential for the cost reduction activities through the entire product life cycle. For this purpose, it is necessary to establish a systematic working procedure, and to develop information system for managing a great deal of production and product-related data required for the cost estimation. The developed system has the capability of estimating a cost of assembly type products as well as unit-item type products. As proposed system is based on the variant approach, it can be used easily at an early design stage without the need for detail design information. Also, this system is integrated with legacy PDM (Product Data Management) and ERP (Enterprise Resource Planning) system for fast. accurate and easy product cost estimation. The estimated cost includes material cost, overhead cost as well as labor cost.

Computational Cost Reduction Method for HQP-based Hierarchical Controller for Articulated Robot (다관절 로봇의 계층적 제어를 위한 HQP의 연산 비용 감소 방법)

  • Park, Mingyu;Kim, Dongwhan;Oh, Yonghwan;Lee, Yisoo
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.16-24
    • /
    • 2022
  • This paper presents a method that can reduce the computational cost of the hierarchical quadratic programming (HQP)-based robot controller. Hierarchical controllers can effectively manage articulated robots with many degrees of freedom (DoFs) to perform multiple tasks. The HQP-based controller is one of the generic hierarchical controllers that can provide a control solution guaranteeing strict task priority while handling numerous equality and inequality constraints. However, according to a large amount of computation, it can be a burden to use it for real-time control. Therefore, for practical use of the HQP, we propose a method to reduce the computational cost by decreasing the size of the decision variable. The computation time and control performance of the proposed method are evaluated by real robot experiments with a 15 DoFs dual-arm manipulator.

DEVELOPMENT OF AUTOMATIC PANEL GENERATION PROGRAM FOR AIRCRAFT SHAPE OPTIMIZATION PROCESS (항공기 형상 최적설계 프로세스를 위한 표면 격자 자동 생성 프로그램의 개발)

  • Gim, G.N.;Kim, B.S.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.41-46
    • /
    • 2015
  • This paper describes study results on the development of an automatic program for generating surface-panel grid for the aircraft optimal design. The aerodynamic analysis is combined into a PIDO tool in conjunction with a number of programs in order to integrate processes for the optimal design. Due to design optimization's iterative feature, it may require lots of time and cost. To relieve this problem, cost-reduction of computation time for aerodynamic analysis is pursued by using the Panel-method, and reduction of grid generation time by automating surface panelling.

The Optimized Design Method of Vehicle for Weight-Reduction (무게절감을 위한 차량 최적 설계 기법)

  • Lee, Jeong-Ick
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.376-381
    • /
    • 2007
  • The geometric configuration in the weight-reduced structure is very required to be started from the conceptual design with low cost, high performance and quality. In this point, a structural-topological shape concerned with conceptual design of structure is important. The method used in this paper combines three optimization techniques, where the shape and physical dimensions of the structure and material distribution are hierachically optimized, with the maximum rigidity of structure and lightweight.

Topology Optimization Using Digital Images (디지털 이미지를 이용한 위상최적설계)

  • Shin, Woon-Joo;Min, Seung-Jae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.4
    • /
    • pp.265-272
    • /
    • 2006
  • For the design and analysis of 3D object featuring complexity and irregularity in shape, sectional digital images measured by an industrial CT scanner are employed to generate a finite element model with uniform voxels. The voxel model plays a key role in developing an integrated reverse engineering system including geometric modeling, simulation and optimization. Design examples applied to topology optimization show that the proposed approach can provide a remarkable reduction in time cost at the conceptual and detail design stages.

Robust Optimization with Static Analysis Assisted Technique for Design of Electric Machine

  • Lee, Jae-Gil;Jung, Hyun-Kyo;Woo, Dong-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2262-2267
    • /
    • 2018
  • In electric machine design, there is a large computation cost for finite element analyses (FEA) when analyzing nonlinear characteristics in the machine Therefore, for the optimal design of an electric machine, designers commonly use an optimization algorithm capable of excellent convergence performance. However, robustness consideration, as this factor can guarantee machine performances capabilities within design uncertainties such as the manufacturing tolerance or external perturbations, is essential during the machine design process. Moreover, additional FEA is required to search robust optimum. To address this issue, this paper proposes a computationally efficient robust optimization algorithm. To reduce the computational burden of the FEA, the proposed algorithm employs a useful technique which termed static analysis assisted technique (SAAT). The proposed method is verified via the effective robust optimal design of electric machine to reduce cogging torque at a reasonable computational cost.

Automatic NC Data Generation for 2D Contour and Pocket Machining using AUTO CAD (AUTO CAD를 이용한 2차원 윤곽 및 포켓가공용 NC 데이터 자동 생성에 관한 연구)

  • Kim D.J.;Song Y.J.;Hahn Y.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.1
    • /
    • pp.11-16
    • /
    • 2005
  • CAD/CAM system may have such advantages of cost reduction, production time shortening, and product quality improvement. But current advanced versions of CAD/CAM system for 3-D NC data generation are too much expensive to purchase and too difficult to make full use for small-scale manufacturers whose main products are of 2-D simple shapes. The objective of this paper is to introduce a cost-effective way to 2-D NC data generation with a widely spread CAD software. Using VISUAL LISP in the well-known AUTO-CAD, the contents and steps of an automatic NC data generation program are presented for 2-D machining of contours and pockets. To approve the usefulness of program, a test application to a real part is exhibited also.

Development of Parallel Algorithm for Dynamic Analysis of Three-Dimensional Large-Scale Structures (3차원 대형구조물의 동적해석을 위한 병렬 알고리즘 개발)

  • 김국규;성창원;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.307-314
    • /
    • 2000
  • A parallel condensation algorithm for efficient dynamic analysis of three-dimensional large-scale structures is presented. The algorithm is developed for a user-friendly and cost effective high-performance computing system on a collection of Pentium processors connected via a 100 Mb/s Ethernet LAN. To harness the parallelism in the computing system effectively, a large-scale structure is partitioned into a number of substructures equal to the number of computers in the computing system Then, for reduction in the size of an eigenvalue problem the computations required for static condensation of each substructure is processed concurrently on each slave computer. The performance of th proposed parallel algorithm is demonstrated by applying to dynamic analysis of a three dimensional structure. The results show that how the parallel algorithm facilitates the efficient use of a small number of low-cost personal computers for dynamic analysis of large-scale structures.

  • PDF