• Title/Summary/Keyword: Computation Efficiency

Search Result 792, Processing Time 0.027 seconds

An Efficient Skipping Method of H.264/AVC Weighted Prediction for Various Illuminating Effects (다양한 영상의 밝기 효과에 대해 효과적으로 적응하는 H.264/AVC의 가중치 예측 생략 방법)

  • Choi, Ji-Ho;SunWoo, Myung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.206-211
    • /
    • 2010
  • This paper describes a skipping method for handling various illuminating effects in video sequences. The weighted prediction in H.264/AVC improves coding efficiency and image quality. However, it requires massive computation overheads for entire system, and thus, reducing the computation complexity becomes more important. Compared to the weighted prediction method in the H.264/AVC, the proposed method can decrease the bitrate down to 15%. Moreover, the proposed algorithm can reduce computation complexity down to 30%, compared to the localized weighted prediction which does not skip unnecessary calculation.

Computational strategies for improving efficiency in rigid-plastic finite element analysis (강소성 유한요소해석의 안정화와 고능률화에 관한 연구)

  • ;;Yoshihiro, Tomita
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.317-322
    • /
    • 1989
  • Effective computational strategies have been proposed in the evaluation of stiffness matrices of rigid-plastic finite element method widely used in simulation of metal forming processes. The stiffness matrices are expressed as the sum of stiffness matrices evaluated by reduced integration and Liu's stabilization matrices which control the occurrence os zero-energy mode due to excessive reduced integration. The proposed method has been applied to the solution of fundamental 3-dimensional problems. The results clarified that the deformed mesh configuration was remarkably stabilized and computation speed attained about 3 times as fast as that of conventional 3-dimensional analyses. Furthermore, computation speed increases by a factor 60 when parallel computation is introduced. This speed has a tendency to increase as the total degree of freedom increases. As a result, this rigid-plastic finite element method enables us to analyze real 3-dimensional forming processes with practically acceptable computation time.

An Analysis on the Design and Speed Performance of a One-man Boat (1인승 소형 보트 설계 및 속도성능 분석)

  • Park, Dong-Woo;Park, Gyeong-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.552-557
    • /
    • 2014
  • The objective of the This study is to access the speed performance employing the sea trial test and CFD with the our own designed and manufactured one-man boat. The overall design process including hull form design was explained. The sea trial was carried out with a manufactured boat in the clam sea. Brake power at the design speed of a boat through the sea trial was measured as 1680 W. The flow computation was conducted considering free surface and dynamic trim using a commercial CFD code(STAR-CCM+). The result of computation provided the information that residual resistance is bigger than fraction's at design speed. The total efficiency were predicted based on the sea trial and CFD. The Total efficiency was divided into shaft efficiency and quasi-propulsive efficiency. By using quasi-propulsive efficiency, it becomes possible to predict speed performance of boat in future. The results can provide information regarding hull form design, performance analysis and development of a boat in future.

Parallel Synthesis Algorithm for Layer-based Computer-generated Holograms Using Sparse-field Localization

  • Park, Jongha;Hahn, Joonku;Kim, Hwi
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.672-679
    • /
    • 2021
  • We propose a high-speed layer-based algorithm for synthesizing computer-generated holograms (CGHs), featuring sparsity-based image segmentation and computational parallelism. The sparsity-based image segmentation of layer-based three-dimensional scenes leads to considerable improvement in the efficiency of CGH computation. The efficiency enhancement of the proposed algorithm is ascribed to the field localization of the fast Fourier transform (FFT), and the consequent reduction of FFT computational complexity.

A Study on Energy Efficiency in Servers Adopting AFA(All-Flash Array) (AFA(All-Flash Array) 탑재 서버의 에너지 효율성에 대한 연구)

  • Kim, Young Man;Han, Jaeil
    • Journal of Information Technology Services
    • /
    • v.18 no.1
    • /
    • pp.79-90
    • /
    • 2019
  • Maximizing energy efficiency minimizes the energy consumption of computation, storage and communications required for IT services, resulting in economic and environmental benefits. Recent advancement of flash and next generation non-volatile memory technology and price decrease of those memories have led to the rise of so-called AFA (All-Flash Array) storage devices made of flash or next generation non-volatile memory. Currently, the AFA devices are rapidly replacing traditional storages in the high-performance servers due to their fast input/output characteristics. However, it is not well known how effective the energy efficiency of the AFA devices in the real world. This paper shows input/output performance and power consumption of the AFA devices measured on the Linux XFS file system via experiments and discusses energy efficiency of the AFA devices in the real world.

An RFID Distance Bounding Protocol Based on Cryptographic Puzzles Providing Strong Privacy and Computational Efficiency (강한 프라이버시와 연산 효율성을 제공하는 암호 퍼즐 기반 RFID 경계 결정 프로토콜)

  • Ahn, Hae-Soon;Yoon, Eun-Jun;Nam, In-Gil
    • The KIPS Transactions:PartC
    • /
    • v.19C no.1
    • /
    • pp.9-18
    • /
    • 2012
  • In 2010, Pedro et al. proposed RFID distance bounding protocol based on WSBC cryptographic puzzle. This paper points out that Pedro et al.'s protocol not only is vulnerable to tag privacy invasion attack and location tracking attack because an attacker can easily obtain the secret key(ID) of a legal tag from the intercepted messages between the reader and the tag, but also requires heavy computation by performing symmetric key operations of the resource limited passive tag and many communication rounds between the reader and the tag. Moreover, to resolve the security weakness and the computation/communication efficiency problems, this paper also present a new RFID distance bounding protocol based on WSBC cryptographic puzzle that can provide strong security and high efficiency. As a result, the proposed protocol not only provides computational and communicational efficiency because it requires secure one-way hash function for the passive tag and it reduces communication rounds, but also provides strong security because both tag and reader use secure one-way hash function to protect their exchanging messages.

A Numerical Study on the Improvement of Performance for the 2 Vane Pump Impeller (2 Vane 펌프 임펠러의 성능 개선에 관한 수치해석적 연구)

  • KIM, SUNG;MA, SANG-BUM;CHOI, YOUNG-SEOK;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.3
    • /
    • pp.293-301
    • /
    • 2020
  • This paper describes a numerical study on the improvement of performance of the 2 vane pump impellers. The design of these impellers was optimized using a commercial computation fluid dynamics code and design of experiments. Geometric design variables were defined by the impeller blade angle distribution. The objective functions were defined as the total head, total efficiency and solid material size of the impellers. The importance of the geometric design variables was analyzed using 2k factorial designs. The interaction between the total head, total efficiency and solid material size, according to the impeller blade angle distribution, is discussed by analyzing the 2k factorial design results.

A Study on the Injection Characteristics of Fuel Supply System of Diesel Engine (디젤엔진 연료계통의 분사특성에 관한 연구)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.49-62
    • /
    • 1993
  • It has been a principle research topic on the diesel engine development to increase the efficiency and the performance of engine to satisfy the user's needs for high reliability and durability. However, recently with the worldwide concerns at the global climate change and environmental protection, the main target in the diesel engine research has been changed to solve the exhaust emission problem in order to satisfy the strict emission regulations. To reduce the pollutant for the diesel engine, the researchs on the combustion chamber is the most important and has to be performed first of all. The diesel fuel injection system plays major role to air-fuel mixing process and influences engine output, themal efficiency, reliability, noise, and emissions. The experimental studies were conducted by varying the various parametric conditions and the results were campared with the computation and calculated results by using the fuel injection simulation program developed during previous research. From the experiments, the matching technique of a fuel injection pump and nozzle was conducted to understand under the various parametric conditions. Also, the relations between needle lift and wave propagation characteristics in high pressure pipe were examined. The basic design data from the experimentations and computation works would be applied to actual design works of diesel fuel injection system.

  • PDF

THREE-DIMENSIONAL FLOW COMPUTATION AND PERFORMANCE CHARACTERISTICS ANALYSIS OF PROPELLERS FOR WATER TREATMENT MIXER (수처리 교반기용 프로펠러의 3차원 유동 전산 해석 및 성능 특성 분석)

  • Bae, Y.G.;Kim, D.H.;Hwang, S.T.;Moon, Y.J.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.10-15
    • /
    • 2015
  • In this study, the characteristics of water treatment mixer with various propeller profiles are numerically invesitgated. The computation was conducted by solving the incompressible Navier-Stokes equations on unstructured tetrahedral elements with k-${\varepsilon}$ turbulence model. It was found that the spreading angle and swirl magnitude of the jet are important factors for the mixer efficiency, since they clearly characterize the propeller and the frontal surface area of the propeller but not so much affected by the skew angle if it exceeds 30 degrees. The case1 and case2 models are found to show the best propeller efficiency. The case2 with low blade angle, however, requires the lowest power input for the same discharge capacity as the case1.

Time-varying modal parameters identification of large flexible spacecraft using a recursive algorithm

  • Ni, Zhiyu;Wu, Zhigang;Wu, Shunan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.184-194
    • /
    • 2016
  • In existing identification methods for on-orbit spacecraft, such as eigensystem realization algorithm (ERA) and subspace method identification (SMI), singular value decomposition (SVD) is used frequently to estimate the modal parameters. However, these identification methods are often used to process the linear time-invariant system, and there is a lower computation efficiency using the SVD when the system order of spacecraft is high. In this study, to improve the computational efficiency in identifying time-varying modal parameters of large spacecraft, a faster recursive algorithm called fast approximated power iteration (FAPI) is employed. This approach avoids the SVD and can be provided as an alternative spacecraft identification method, and the latest modal parameters obtained can be applied for updating the controller parameters timely (e.g. the self-adaptive control problem). In numerical simulations, two large flexible spacecraft models, the Engineering Test Satellite-VIII (ETS-VIII) and Soil Moisture Active/Passive (SMAP) satellite, are established. The identification results show that this recursive algorithm can obtain the time-varying modal parameters, and the computation time is reduced significantly.