• Title/Summary/Keyword: Compressure Strength

Search Result 3, Processing Time 0.017 seconds

Development of Non-Sintered Ceramic Containing Basalt Powder (현무암 석분을 혼입한 비소성 세라믹의 개발)

  • Kim, Gui-Shik;Kim, Jung-Yun;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.93-99
    • /
    • 2014
  • The purpose of this paper is to manufacture the non-sintered ceramic used lime and industrial waste. The used materials were basalt powder sludge, calcium hydroxide(Ca(OH)2) and additives such as calcium stearate and $TiO_2$. The mixing ratios between Ca(OH)2 and sludge were 5:5, 6:4 and 8:2, respectively. The ceramic forms were pressured by 100, 200 and 300 bar and cured in 14% CO2 for 12 days. The behaviors of compressive strength, specific gravity, water absorption and pH of ceramic form were investigated. The results were compressive strength of over 36 MPa, water absorption of over 8.8%, pH value of over 12.3. And these results satisfied GR F 4006 and 4031 standard.

Effects of Cr, Mo an B additions on the microstructure and mechanical properties of Fe-28at.%Al alloys (Fe-28at.%Al 합금의 미세조직과 기계적 성질에 미치는 Cr, Mo 및 B의 영향)

  • Choi, Dap-Chun;Lee, Yeon-O;Kim, Kwan-Hyu;Park, Eun-Sik;Lee, Ho-Jong
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.469-476
    • /
    • 1995
  • The effects of Cr, Mo or B additions were investigated on $B2{\leftrightarrow}DO_3$ structural transition temperature $(T_C)$ and mechanical properties of Fe-28at.%Al. The raw materials were arc-melted in vacuum and then subjected to the following heat-treatments to maximize the $DO_3$ ordered structure : $1000^{\circ}C/7days$, slowly cooled to $500^{\circ}C$ and then held for 5 days. In the effect on the grain refinment, the addition of alloying element B was the most effective. The addition of Cr or Mo had little effect. When 1at.%Mo was added, $T_c$ increase about $30^{\circ}C$, but Cr had a very little effect on $T_c$. On the contrary, when B was added, $T_c$ was apt to come down minutely. In the additional effect of alloying element on the mechanical properties, Cr was apt to decrease the microvickers hardness and yield strength, Mo and B didn't have much effect. In the case of compressure strength test, the effect of the environment on the yield strength was contrary to the result of the tensile strength test.

  • PDF

Evaluation of Tensile Material Properties and Confined Performance of GFRP Composite Due to Temperature Elevation (콘크리트 횡구속용 GFRP 보강재의 온도변화에 따른 인장 재료특성 및 구속성능 평가)

  • Jung, Woo-Young;Kim, Jin-Sup;Kwon, Min-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3562-3569
    • /
    • 2013
  • The performance of concrete structure decreases with change in time and the external environment. In order to reinforce the structure, the research about new material development and application of newly developed materials are widely conducted. In the case of composite FRP, it received good attention in the academia due to its high intensity-weight ratio, excellent corrosion resistency as well as good workability. When applying at the construction field, however, the utilization of FRP did not increase as much due to lack of reliability and design standard. Current study investigated the material characteristics during the temperature change at high temperature and the structural behavior from restraint effect for GFRP reinforcing materials. Two experimental variables were set in this study: GFRP reinforcements due to tensile properties of temperature and restraint compression effects. Three concrete specimen were selected for each set temperatures. For this reason, as a variable to experiment with the effects confined compression concrete members value and tensile properties with temperature reinforcement GFRP, experiment produced three pieces each for each set temperature, the concrete specimen, which is confined in the GFRP was selected each I did. For the temperature change during the experiment, the concrete specimen were mounted in order to expose to experimental high temperature for certain period of time. For compression performance evaluation, reinforcement effect from horizontal constraint of the fiber were measured using an Universal Material Testing Machine (UTM). Finally, this study revealed that the binding characteristics of GFRP materials from temperature change decreased. Also, this study showed that the maximum compression intensity decreased as the temperature increased up to $150^{\circ}C$ in the constraints ability of the GFRP reinforcements during the horizontal constraint of concrete.