• Title/Summary/Keyword: Compressor model

Search Result 412, Processing Time 0.022 seconds

Performance analysis of oil free air compressor for automotive electronic air suspension system (차량용 공기현가장치의 무급유 공기압축기 성능해석)

  • Shim, Jae-Hwi;Kim, Ho-Young;Lee, Yong-Ho;Kim, Hyun-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.572-577
    • /
    • 2006
  • Numerical simulation has been made on the performance of an oil free air compressor for automotive electronic air suspension system. Calculation results on the flow rate at various air supply pressures were reasonably well compared to the experimental data. With the aid of the computer simulation program, parametric study on the compressor design parameters has also been carried out for the compressor performance improvement: Increase in the discharge port diameter or discharge valve stiffness was found to be effective to increase the flow rate per unit compressor input for the present compressor model.

  • PDF

Analysis of Oil Behavior inside Upper Part of Rotary Compressor Using Visualization Technique (가시화 기법을 이용한 로터리 압축기 상부의 오일 거동 분석)

  • Cho Pil-Jae;Lee Seung-Kap;Youn Young;Ko Han Seo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.772-779
    • /
    • 2005
  • An efficiency of a refrigeration cycle and a reliability of a compressor can be reduced if a refrigerant including excessive lubricating oil is exhausted from the compressor. Thus, the analysis of the oil behavior inside the compressor is required to prevent the problem. A tested rotary compressor with visualization windows has been manufactured in this study to investigate the oil behavior using developed visualization techniques. The oil behaviors at various operating conditions have been quantified to obtain the relationship with the outlet pressure inside the compressor. Also, the effect of the operating conditions on the quantity of the exhausted oil from the rotary compressor has been investigated using a manufactured test model.

A Study on The Stage Matching of Multistage Compressor (다단 압축기의 단 매칭 기법에 관한 연구)

  • Choi, Chang-Ho;Kim, Jin-Han;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.163-168
    • /
    • 2000
  • A method to search the design parameters for optimum stage matching has been used based on a 1-D mathematical model of a compressor, which uses the data obtained from the preliminary test to identify the design parameters. This methodology was applied with a two-stage axial compressor, which was originally designed for a helicopter gas turbine engine. After Identifying design parameters using preliminary test data, an optimization process has been employed to achieve the best matching between the stages (i.e., maximum efficiency of the compressor at its operation modes within a given range of the rotor speed under given restrictions for required stall margins and mass flow). 3-D flow calculations have been performed to confirm the usefulness of the corrections based on 1-D mathematical model. Calculational results agree well with the experimental data in view of the performance characteristics. Some promising results were produced through the methodology proposed in this paper in conjunction with flow calculations.

  • PDF

A Numerical Study on Heat Transfer in a Reciprocating Compressor for a Domestic Refrigerator (소형 냉장고용 왕복동식 압축기의 열전달에 관한 수치해석 연구)

  • Sim Yun-Hee;Youn Young;Park Youn Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.377-385
    • /
    • 2005
  • An analytical model was developed using the lumped mass parameter method to estimate temperature distribution of metal parts and refrigerant of the hermetic reciprocating compressor, All of the lumped mass has been equated with the first law of thermodynamics. In the delivered equation, correlations of heat transfer coefficient in the heat transfer equation were taken from open literature. The equations are solved by Gauss-Jordan method simultaneously. To verify the developed numerical program, an experiment was conducted with a domestic refrigerator. The compressor which had been installed at the bottom of the experimental refrigerator was modified to measure internal temperature. Model verification test was conducted at $30^{\circ}C$ outdoor temperature with variation of compressor cooling conditions. As a result, there is a good consistency between calculated temperature and measured one.

Numerical Simulation and Experimental Studies on Lubricating System of Scroll Compressor (스크롤 압축기 윤활시스템의 수치해석과 실험)

  • 이진갑;김종봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.108-115
    • /
    • 2004
  • Experiment and analytical studies on the oil supply characteristics of scroll compressor have been presented. For a scroll compressor, oil supply system consisting of individual lubricating element such as pumps, oil passages and sliding surfaces has been modeled by equivalent electric circuit. By solving the closed network equations of the model, oil flow rates at various lubrication elements could be obtained. Total amount of the oil flow rate drawn into the shaft has been measured and compared reasonably well with the prediction by the numerical simulation.

Dynamic Behavior and Lubrication Characteristics of a Reciprocating Compressor Crankshaft by n Finite Bearing Model (유한 베어링 모델링을 이용한 왕복동형 압축기 크랭크축의 동적 거동 및 윤활특성 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.18 no.6
    • /
    • pp.402-410
    • /
    • 2002
  • In this study, a hydrodynamic analysis of the reciprocating compressor crankshaft considering a finite bearing modelling of the journal bearings used in small refrigeration compressors is performed. In the problem formulation of the compression mechanism dynamics, all corresponding hydrodynamic forces and moments are considered using the finite bearing analysis in order to determine the crankshaft trajectory at each step. The solution of the Reynolds' equation is determined numerically using a finite difference method and a Newton-Raphson procedure was employed in solving the dynamic equations of the crankshaft. The crankshaft orbits fur the finite bearing model and short bearing theory were used to compare the effect of the hydrodynamic farces of the journal bearings on the dynamic and lubrication characteristics of the crankshaft-journal bearing system. Results show that the finite bearing model for the journal bearings must be considered in calculating for the accurate dynamic characteristics of the reciprocating compressor crankshaft.

Prediction and Reduction of Transient Vibration of Piping System for a Rotary Compressor (공조용 압축기 배관계의 과도진동 예측 및 저감설계)

  • Ryu, Sang-Mo;Jeong, Weui-Bong;Han, Hyung-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.733-740
    • /
    • 2011
  • This paper deals with the process to identify the transient exciting force generated from a rotary compressor. The compressor was assumed to be a rigid body. The equation of motion of a rigid compressor supported by three mounts was derived with 6 degree-of-freedom. The exciting forces at the center of mass of the compressor were estimated from the acceleration data measured at compressor shell. Compressor-pipe system was modeled numerically. The accelerations of compressor and pipe were predicted numerically by using the estimated exciting force. A new shape of pipe model was proposed to reduce the vibration. In the prediction by the method in this paper, the maximum acceleration of the pipe could be reduced by 53.7 % at the steady-state and by 12 % at the transient process. In the real experiments, the maximum acceleration of the pipe was reduced by 54.2 % at steady-state and 14.7 % at the transient process. It was verified that the numerical results showed good agreement with experimental results.

A Study on Efficiency Enhancement in a Reciprocating Compressor for a Domestic Refrigerator (소형 냉장고용 왕복동식 압축기의 효율향상에 관한 연구)

  • Sim Yun-Hee;Youn Young;Park Youn Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.418-426
    • /
    • 2005
  • Efficiency of the compressor is most important parameter in the domestic refrigerator which runs year around. With developed analytical model about heat transfer analysis in the hermetic compressor, parametric study was performed to know the effect on efficiency by design and material modification of the compressor. Volumetric efficiency of the compressor increased approximately $3\%$ when insulation is increased about $50\%$ in suction component. However, the insulation effect on discharge component was only $1\%$. When the thermal conductivity of the discharge plenum is reduced from 300 to 20 $W/m{\cdot}K$, volumetric efficiency increased about $3.1\%$. There is no attraction in efficiency increment with variation of outside surface area of the compressor and radial heat transfer coefficient of the solid component in the compressor shell.

Model Reference Adaptive Control of the Air Flow Rate of Centrifugal Compressor Using State Space Method (상태 공간 기법을 이용한 원심압축기 공기 유량 모델 기반 적응 제어)

  • Han, Jaeyoung;Jung, Mooncheong;Yu, Sangseok;Yi, Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.535-542
    • /
    • 2016
  • In this study, a model reference adaptive controller is developed to regulate the outlet air flow rate of centrifugal compressor for automotive supercharger. The centrifugal compressor is developed using the analytical based method to predict the transient behavior of operating and the designed model is validated with experimental data to confirm the system accuracy. The model reference adaptive control structure consists of a compressor model and a MRAC(model reference adaptive control) mechanism. The feedback control do not robust with variation of system parameter but the applied adaptive control is robust even if the system parameter is changed. As a result, the MRAC was regulated to reference air flow rate. Also MRAC was found to be more robust control compared with the feedback control even if the system parameter is changed.

Dynamic Analysis of a Discharge Valve for Electrodynamic Oscillating Compressor (전동형 진동식 압축기 토출밸브의 동적해석)

  • 김형진;박윤식
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.615-622
    • /
    • 2000
  • Discharge valve mechanism for an electrodynamic-oscillating compressor is different from that of a conventional reciprocating compressor. It has a larger discharge port area, heavier valve mass and stiffer valve spring comparing with the reciprocating one. Since the motion of piston is not kinematically restricted as in conventional reciprocating compressors, the stroke of the piston can change sensitively with supplied boltage and load. Thus piston can impact with discharge valve occasionally. This work deals on dynamic analysis of discharge valve considering all of those different characteristics. Impact is considered by a spring-mass model, and the pressure fluctuation at the both sides of the valve is also included considering the discharge port area and valve spring preload. It is assumed that piston moves in the region of between top and bottom dead center not by calculating piston motion from an electrodynamic equation but by getting values through experiment. Discharge pressure fluctuation is calculated using Helmholtz modeling. Finally, dynamic model for a discharge valve is constructed. In order to validate the model analysis results, the valve motion is experimentally measured and compared with analysis.

  • PDF