• Title/Summary/Keyword: Compressor map

Search Result 57, Processing Time 0.028 seconds

An Analytic and Experimental Study on the Performance Characteristic of the Rotary Compressor (로타리 압축기 성능특성에 관한 해석 및 실험)

  • 최득관;김경천;차강욱
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.497-504
    • /
    • 2001
  • A study to improve the accuracy of a map-based compressor model with experiment was performed. Corrections on the effects of suction gas superheat and heat leakage from a compressor shell are required to apply the compressor amp model based on the empirical performance data(map) of compressor manufacturers to the actual system. So experiments to assess the effects of superheat and hat leakage were performed and the corrected equations were made. Compressors and refrigerant used in the experiment were the high pressure type rotary compressor and R-22, experiments were performed by compressor calorimeter. From the experiment, a volumetric efficiency correction factor$(F_ν)$ showed the value of 0.77, slightly higher than 0.75 proposed by Dabiri and Rice for low pressure type reciprocating compressor, and the heat leakage from the compressor shell turned out to be a factor that influenced the discharged mass flow rate. The relation between heat leakage of compressor shell and the variation of discharged mass flow rate from compressor was considered in compressor map modeling as an empirical function. With this function, the prediction accuracy of compressor model in system conditions was improved.

  • PDF

A Study on Compressor Map Generation of a Gas Turbine Engine Using Hybrid Intelligent Method (하이브리드 기법을 이용한 가스터빈 엔진의 압축기 성능선도 생성에 관한 연구)

  • Kong, Chang-Duk;Kho, Seong-Hee;Ki, Ja-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.54-60
    • /
    • 2006
  • A method for generating the compressor map from some performance measuring data using the hybrid intelligent technique was newly proposed. In order to improve accuracy of the traditional scaling method, a method to generate the compressor map using the GAs(Genetic Algorithms) was previously proposed, but the method has a drawback that it can not find correctly surge and choke points of the compressor map. However, the proposed hybrid intelligent method can determine obviously those points as well as improve the accuracy of the compressor map through complementarily using the GAs and the scaling method.

A Study on Compressor Map Identification using Artificial Intelligent Technique and Performance Deck Data (인공지능 및 성능덱 데이터를 이용한 압축기 성능도 식별에 관한 연구)

  • Ki Ja-Young;Kong Chang-Duck;Lee Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.81-88
    • /
    • 2005
  • In order to estimate the gas turbine engine performance precisely, the component maps containing their own performance characteristics should be needed. In this study a component map generation method which may identify compressor map conversely from a performance deck provided by engine manufacturer using genetic algorithms was newly proposed. As a demonstration example for this study, the PW 206C turbo shaft engine for the tilt rotor type Smart UAV(Unmanned Aerial Vehicle). In order to verify the proposed method, steady-state performance analysis results using the newly generated compressor map was compared with them performed by EEPP(Estimated Engine Performance Program) deck provided by engine manufacturer. And also the performance results using the identified maps were compared with them using the traditional scaling method. When the performance analysis is performed at far away operation conditions from the design point, in case of use of e component map by the traditional scaling method, the error of the performance analysis results is greatly increasing. In the other hand, if in case of use of the compressor map generated by the proposed GAs scheme, the performance analysis results are closely met with those by the performance deck, EEPP.

A Study of Inverse Modeling from Micro Gas Turbine Experimental Test Data (소형 가스터빈 엔진 실험 데이터를 이용한 역모델링 연구)

  • Kong, Chang-Duk;Lim, Se-Myeong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.6
    • /
    • pp.1-7
    • /
    • 2009
  • The gas turbine engine performance is greatly relied on its component performance characteristics. Generally, acquisition of component maps is not easy for engine purchasers because it is an expensive intellectual property of gas turbine engine supplier. In the previous work, the maps were inversely generated from engine performance deck data, but this method is limited to obtain the realistic maps due to calculated performance deck data. Therefore this work proposes newly to generate more realistic compressor map from experimental performance test data. And then a realistic compressor map can be generated form those processed data using the proposed extended scaling method at each rotational speed. Evaluation can be made through comparison between performance analysis results using the performance simulation program including the generated compressor map and on-condition monitoring performance data.

Component Map Generation of a Gas Turbine Engine Using Genetic Algorithms and Scaling Method (유전자 알고리즘과 스케일링 기법을 이용한 가스터빈 엔진 구성품 성능선도 개선에 관한 연구)

  • Kho Seong-Hee;Kong Chang-Duk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.299-303
    • /
    • 2005
  • In the present study, in order to improve precision of the component characteristic maps generated by the scaling method, a map generation method which can produce a compressor map from some experimental performance data using GAs(Genetic Algorithms) was proposed. However, in case of the proposed map generation method only using GAs, because it has a drawback for estimating correctly the surge points and the choke points of the compressor map, a modified GAs method was additionally proposed through complementally use of the scaling method to determine obviously those points of the compressor map.

  • PDF

Analysis on the performance characteristics of a variable-speed, roller-type vane compressor operating at low evaporating temperature (낮은 증발온도에서 운전되는 가변속 롤러형 베인 압축기의 성능특성에 관한 분석)

  • 김봉훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.193-204
    • /
    • 1999
  • Performance of a variable-speed, roller-type vane compressor was evaluated at low evaporating temperature. First, an experimental investigation was conducted to examine the performance variation as functions of both outdoor temperature and rotating speed. For this purpose, a typical heat pump was implemented as a test apparatus to measure mass flow rate and power input. Secondly, computational investigations corresponding to the heat pump test conditions were performed to predict compressor performance using ORNL Map-Based compressor model. Results obtained from the heat-pump experiments showed that both mass flow rate and power consumption were sensitively dependent on both evaporating temperature and compressor speed as was predicted from the computational results. From the comparisons of both experimental and computational results, it was well recognized that the ORNL model was subjected to larger error in the accuracy of prediction as outdoor temperature decreased. When the outdoor temperature was above $-5^{\cire}C$, errors of predicted values corresponding to both mass flow rate and power consumption were estimated as $\pm$10% and $\pm$ 15%, respectively. Finally, it is suggested that the ORNL model needs to be re-evaluated if compressor map data tested below $-5^{\cire}C$(in evaporating temperature) are available.

  • PDF

A Study on Compressor Map Identification using Artificial Intelligent Technique and Performance Deck Data (인공지능 및 성능덱 데이터를 이용한 압축기 성능도 식별에 관한 연구)

  • Kong Chang-Duck;Ki Ja-Young;Lee Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.149-153
    • /
    • 2005
  • In order to estimate the gas turbine engine performance precisely, the component maps containing their own performance characteristics should be needed. In this study a component map generation method which may identify compressor map conversely from a performance deck provided by engine manufacturer using genetic algorithms was newly proposed. As a demonstration example for this study, the PW 206C turbo shaft engine for the tilt rotor type Smart UAV (Unmanned Aerial Vehicle). In ordo to verify the proposed method, steady-state performance analysis results using the newly generated compressor map was compared with them performed by EEPP(Estimated Engine Performance Program) deck provided by engine manufacturer. And also the performance results using the identified maps were compared with them using the traditional scaling method. In this investigation, it was found that the newly proposed map generation method would be more effective than the traditional scaling method.

  • PDF

Noise Diagram of an Automotive Turbo Charger and Its Applications (차량용 터보차져의 소음도표 작성 및 응용)

  • Lee, Hyeong-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.502-509
    • /
    • 2010
  • A test facility which can simultaneously measure turbocharger operating condition variables and vibro-acoustic emission in the situations that are quite similar to real internal combustion engine operating conditions has been introduced. Using this facility, a new method sweeping from full open throttle to deep surge region along constant speed curves can be utilized instead of the stationary method that has been traditionally used to obtain turbocharger compressor maps. Data covering an extensive range of the compressor performance map have been collected and analyzed. An experimental study is performed to define a noise diagram that correlates vibro-acoustic measurements to aerothermodynamic operating conditions. An instrumentation set in the facility allows the automatic definition of the operating point on the turbine and compressor map of the turbocharger. Also, radiated sound pressure and casing vibration data corresponding to the point are obtained by a microphone in the vicinity of the compressor casing and an accelerometer on the casing. The major source(s) of noise at specific operating point on the map can be easily identified with these maps. Also, acoustic characteristics of a given turbocharger at the vicinity of the surge as well as in the surge are also defined. Finally, the possibility to define mild surge region of a turbocharger using vibro-acoustic measurements is studied.

Study on Installed Performance of Turbo Shaft Engine (PW206C) for the Smart UAV (스마트 무인기용 터보축 엔진(PW206C)의 장착성능에 관한 연구)

  • Kong Chang-Duk;Owino George Omollo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.222-226
    • /
    • 2006
  • The purpose of this study is to analyze both the design and off design performance simulation of the PW206C turbo shaft engine used in the development of the smart UAV (Unmanned Ariel Vehicle) by KARI(Korean Aerospace Research Institute). Its mainly aims to investigate performance behavior at the un-installed and installed conditions. The ways employed to be able to analyze the performance extensively were mainly carried out by comparison of performance simulation results from both the commercial program 'GASTURB 9' using compressor maps generated by Genetic algorithms (GAs) or Scaling Method, and the engine manufacturer's program 'EEPP'. Off-design performance analysis was performed through matching of both mass flow and work between engine components. The set of performance simulations of the developed analytical models was performed by a commercial program package (GASTURB 9) that provides great flexibility in the choice of independent variables of the overall system. The results from the simulations are used to compare turbo shaft engine (PW206C) performance data obtained by the EEPP. At un-installed condition, it was found that the results with the compressor map generated by GAs were relatively agreed well than those with the compressor map generated by the Scaling Method. The performance calculation results using the compressor map generated by GAs were compared at un-installed condition and installed conditions with ECS-off and ECS-Max in variation of altitude, gas generator speed and flight speed.

  • PDF

A Study of Inverse Modeling from Micro Gas Turbine Experimental Test Data (소형 가스터빈 엔진 실험 데이터를 이용한 역모델링 연구)

  • Kong, Chang-Duk;Lim, Se-Myeong;Koo, Young-Ju;Kim, Keon-Woo;Oh, Seong-Hwan;Kim, Ji-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.537-541
    • /
    • 2009
  • The gas turbine engine performance is greatly relied on its component performance characteristics. Generally, acquisition of component maps is not easy for engine purchasers because it is an expensive intellectual property of gas turbine engine supplier. In the previous work, the maps were inversely generated from engine performance deck data, but this method is limited to obtain the realistic maps due to calculated performance deck data. Therefore this work proposes newly to generate more realistic compressor map from experimental performance test data. And then a realistic compressor map can be generated form those processed data using the proposed extended scaling method at each rotational speed. Evaluation can be made through comparison between performance analysis results using the performance simulation program including the generated compressor map and on-condition monitoring performance data.

  • PDF