• Title/Summary/Keyword: Compressive working

Search Result 94, Processing Time 0.031 seconds

Comparative Study on Compressive Strength of Concrete with New Sand-Cap and Neoprene Pad

  • Park, Young-Shik;Suh, Jin-Kook
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 2008
  • The most typical capping method for concrete structures is a sulfur-mortar compound capping, provided it satisfied the standard criterion set forth by ASTM C 617, but this conventional bonded-type method has many problems. It exhibits relatively the smaller unreliable value of the strength of high-strength concrete due to the differences of elasticity and strength between the cylinder and the cap, and manifests poor serviceability such as dangerous working tasks or a waste of the working time. To prevent these problems, unbonded-type capping methods have taken the place of the conventional methods in recent years. One of the popular methods is the use of synthetic rubber like a neoprene pad. Serious problems still remain in this method, which include the consideration of its chemical characteristics in consideration of the selection, the safekeeping and the economy of the pads. Moreover, the synthetic rubber pads cannot be used in concrete cylinder with strength greater than 80 MPa according to ASTM C 1231-00. New 'sand-capping method' presented in this study, can be applicable to the compressive strength evaluation of the high strength concrete in the range of $70{\sim}100\;MPa$. This new method has better simplicity and reliability than those of existing 'sand-box', because usual materials such as standard sand and simply-devised apparatus are used for the capping system. The statistical analysis of the test results revealed that the new sand-capping method exhibited the smallest deviation and dispersion, attesting for its much better reliability than other methods specified in ASTM C 1231/1231M.

Design and Fabrication of Compressive Receiver for RFID Signal Detection (RFID 신호 탐지용 컴프레시브 수신기의 설계 및 제작)

  • Jo, Won-Sang;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.321-330
    • /
    • 2010
  • In this paper, the theoretical background and the specific implementation method of a compressive receiver for RFID signal detection as well as the design method of DDL(Dispersive Delay Line) and chirp LO are described. DDL, which is one of the main components of the compressive receiver, is designed to have $13{\mu}s$ dispersive delay time and 6 MHz bandwidth using the SAW technique based on $LiNbO_3$ material. The chirp LO is designed using DDS(Direct Digital Synthesizer). Also the compressive receiver is fabricated to be installed into the RFID reader. Test results show the maximum frequency error of 25 kHz for single signal input, the receiver sensitivity of -44 dBm, and the maximum frequency error is 75 kHz for 6 multi-tone input signals. These results indicate that the fabricated compressive receiver is working well even in dense RFID operating environments.

Study on the Structural and Mechanical Characteristics of ITO Films Deposited by Pulsed DC Magnetron Sputtering

  • Kang, Junyoung;Le, Anh Huy Tuan;Park, Hyeongsik;Kim, Yongjun;Yi, Junsin;Kim, Sunbo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.351-354
    • /
    • 2016
  • The mechanical properties of ITO films such as adhesion and internal stress are very important for the commercial application of solar cell devices. We report high quality pulsed DC magnetron sputtered ITO films deposited on silicon and glass substrates with low resistivity and high transmittance for various working pressures ranging from 0.96 to 3.0 mTorr. ITO films showed the lowest resistivity of $2.68{\times}10^{-4}{\Omega}{\cdot}cm$, high hall mobility of $46.89cm^2/V.s$, and high transmittance (>85%) for the ITO films deposited at a low working pressure of 0.99 mTorr. The ITO films deposited at a low working (0.96 mTorr) pressure had both amorphous and polycrystalline structures and were found to have compressive stress while the ITO films deposited at higher temperature than 0.99 mTorr was mixture of amorphous and polycrystalline and was found to have tensile stress.

An Experimental Study on the Compressive Strength of High Strength Concrete According to Testing Condition (시험조건과 고강도콘크리트의 압축강도 관계에 관한 실험적 연구)

  • Chin, Young-Gil;Lee, Yong-Su;Kim, Kwang-Seo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.2
    • /
    • pp.129-134
    • /
    • 2002
  • The strength and durability of concrete are affected by various factors such as the quality of material, mixing ratio, construction, the method of cure, time elapsed. the condition of test and etc., it is very difficult to pre-estimate the strength of concrete with the use of experimental specimen. The domestic standard of specimen cylindrical type and its sizes are both l0cm$\times$20cm and 15cm$\times$30cm, which are prescribed in KS F2405, and the loading speed is prescribed to test with 2~3kgf/$\textrm{cm}^2$ per second. The loading speed should have great effect on the compressive strength, but in reality in the construction site sometimes the loading speed is applied so dubiously that the value of the compressive strength can be unreliable. And the cross sectional area of a specimen should be level and smooth, otherwise it can be broken at a lower stress than the real strength through the eccentric or intensive working of the load. Capping should be carried out in order to measure the strength correctly. And used for capping are various materials such as capping compound, cement glue, plaster, mechanical grinding and etc. In this study, therefore, I have carried out an experiment on the relationship among the loading speed, the ratio of height to diameter of specimen, the method of capping, and the compressive strength, for the efficient quality control of concrete structures. So this study has been purposed to provide some basic data that can be used effectively at construction sites.

Study of thin film transition liquid crystal display (TFT-LCD) optical waste glass applied in early-high-strength controlled low strength materials

  • Wang, Her-Yung;Chen, Jyun-Sheng
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.491-501
    • /
    • 2008
  • The present study verifies compressive strength, ultrasonic pulse velocity, electrical resistance,permeable ratio, and shrinkage from waste glass controlled low strength materials (WGCLSM) and early-high-strength WGCSLM specimens, by replacing the sand with waste glass percentages of 0%, 10%,20%, and 30%. This study reveals that increasing amounts of waste LCD glass incorporated into concrete increases WGCLSM fluidity and reduces the setting time, resulting in good working properties. By increasing the glass to sand replacement ratio, the compressive strength decreases to achieve low-strength effects. Furthermore, the electrical resistance also rises as a result of increasing the glass to sand replacement ratio. Early-high-strength WGCSLM aged 28 days has twice the electrical resistance compared to general WGCSLM. Early-high-strength WGCSLM aged 7 days has a higher ultrasonic pulse velocity similar to WGCSLM aged 28 days. The variation of length with age of different compositions is all within the tolerance range of 0.025%. This study demonstrates that the proper composition ratio of waste LCD glass to sand in early-high-strength WGCSLM can be determined by using different amounts of glass-sand. A mechanism for LCD optical waste glass usage can be established to achieve industrial waste minimization, resource recycling, and economic security.

Modeling Negative Stiffness Mechanism of Vestibular Hair Cell by Applying Gating Spring Hypothesis to Inverted Pendulum Array (게이팅 스프링 가설을 적용한 전정기관 유모세포의 반강성 메커니즘 모델)

  • Lim, Ko-Eun;Park, Su-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.405-408
    • /
    • 2007
  • Vestibular hair cells, the sensory receptors of vestibular organs, selectively amplify miniscule stimuli to attain high sensitivity. Such selective amplification results in compressive nonlinear sensitivity, which plays an important role in expanding dynamic range while ensuring robustness of the system. In this study, negative stiffness mechanism, a mechanism responsible for the selective amplification by vestibular hair cells, is applied to a simple mechanical system consisting of an array of inverted pendulums. The structure and working principle of the system have been inspired by gating spring hypothesis proposing that opening and closing of transduction channels contributes to the global stiffness of vestibular hair bundle. Parameter study was carried out to analyze the effect of each parameter on the compressive nonlinearity of suggested model.

  • PDF

A Study on the Strengths of Polyurethane Morthar Cured under Low Temperature Condition (저온양생한 폴리우레탄 모르타르의 강도특성에 관한 연구)

  • 오종석;정효석;박홍신;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.337-342
    • /
    • 1999
  • The Purpose of this study is to evaluate the strength characteristics of polyurethane(PUR) mortar cured under low temperature condition. PUR mortars are prepared with various catalyst content, methylene chloride(MC) content as a viscosity reducing agent, and curing age at low temperature condition of $0^{\circ}C$, -5$^{\circ}C$ and -1$0^{\circ}C$, tested for working life, compressive and flexural strengths. From the test results, the catalyst and MC contents affect the degree of hardening and blowing of PUR mortar. Strengths increase with an increasing catalyst content at low temperature. Flexural and compressive strength of PUR mortar are about 177kgf/$\textrm{cm}^2$ and 490kgf/$\textrm{cm}^2$ respectively at curing temperature of -1$0^{\circ}C$ with catalyst content of 0.4%. Therefore, it is apparent that this PUR mortars have a sufficient strengths for repair of concrete structures.

  • PDF

A Study for the Improvement on a Fatigue Life for Cr-Si Alloyed Valve Springs (Si-Cr강 밸브스프링의 피로수명 향상에 관한 연구)

  • 임철록;김태호;박상언;김기전;정태훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.421-424
    • /
    • 2000
  • Valve springs with high fatigue strength corresponding to the incresement of working stresses, are required for the higher generating power and the better fuel economy of automobile engines. For this purpose, high strength oil tempered wires are being used. By a method of the high strength for the valve spring, modification of manufacturing processes is being applied. In this case, the cause and effect for the improvement of the fatigue strength has not yet been explained obviously. Therefore, in this report, comparison of fatigue life between valve springs of conventional processes with oil tempered wires and new manufacturing processes was made. As a result of the fatigue test, the fatigue life of the latter was attained maximum 7 times than that of the former. It was cleared that the improvement of the fatigue life was caused by difference of compressive residual stresses at depth of 0.2mm below the inner side surface of both valve springs.

  • PDF

A Fundamental Study on the Properties of Polyurethane Concrete (폴리우레탄 콘크리트의 기초적 성상에 관한 연구)

  • 강재홍;조영국;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.253-259
    • /
    • 1996
  • The purpose of this study is to investigate the fundamental properties of polyurethan concrete. Polyurethane must be expanded by means of a blowing agent during polymerization. Chemical blowing is caused by the reaction water with isocyanate. Binder system for polyurethane concrete is based on polyol and isocyanate with catalyst, surfactant, and methyl chloride. Polyurethane concretes are prepared with various grading of aggregate, and tested for compressive, flexural strengths, flow test, foaming multiple proportion, working life, condition of surface, distirbution of aggregate. From the test results, the foaming of polyurethane concretes are affceted by amount and grading of aggregate. Workability increases with raising amount of methy chloride and working life reduced according to amount of catalyst. The mix proportion of B with methyl chloride of 1% and catalyst of 0.1g for polyurethane concrete is recommended in consideration of strengths, condition of surface and balance between cost and performance.

  • PDF

Influence of Portland Cement Character and Working Condition on the Physical Properties of Concrete (시멘트의 특성과 사용조건이 콘크리트의 물성에 미치는 영향)

  • 손명수;김원기;강석화;박동철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.81-84
    • /
    • 1999
  • In this study, the influence of specific surface area of cement, substitution ratio of gypsum anhydrite on the physical properties of concrete were investigated by measurements of slump, air content and compressive strength. The results showed that reducing the specific surface area of cement under 3200$\textrm{cm}^2$/g and using 20% of gypsum anhydrite were desirable to prevent the decrease in workability and strength of concrete in summer season.

  • PDF