• Title/Summary/Keyword: Compressive strength of cement

Search Result 2,513, Processing Time 0.02 seconds

The Long-term Durability Evaluation of PC Box for Near-surface Transit System manufactured by Microwave Heat curing (마이크로웨이브 발열양생에 의해 제작된 저심도 철도시스템용 PC BOX의 장기내구성 평가)

  • Koh, Tae-Hoon;Yoo, Han-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.766-771
    • /
    • 2016
  • This study examined the long-term durability of PC boxes, which was manufactured by low-carbon eco-friendly concrete using an alternative binder to cement and alternative fine aggregate to sand and microwave heat curing system to reduce the construction cost of a near-surface transit system. Based on the test results, the initial compressive strength of microwave heat cured concrete was higher than that of the steam cured concrete, but those were similar in the long-term age. In addition, there was no significant difference between the two curing conditions in the chemical resistance and the freeze-thawing resistance, and the chloride ion penetration level of the concrete cured by two methods was very low. Therefore, low-carbon eco-friendly concrete and microwave heat curing technology are expected to contribute to the economic construction of a near-surface transit system, and reduce carbon dioxide emissions and environmental impact.

Evaluation of Field Applicability with Coal Mine Drainage Sludge as a Liner: Part II: Effect of Freezing/Thawing in CMDS Mixed Liner (차수재로의 광산슬러지 재활용 적용성 평가: Part II: 동결/융해에 의한 광산슬러지 혼합 차수재의 거동)

  • Lee, Jai-Young;Bae, Sun-Young;Park, Kyoung-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.73-79
    • /
    • 2011
  • Based on the results of Part 1 of our two-parts paper, the possibility on field applicability of CMDS(Coal Mine Drainage Sludge) mixed with bentonite and cement as a liner in landfill sites was investigated. The optimum moisture content that met the landfill liner condition was obtained when the ratio of CMDS: bentonite: cement was 1: 0.5: 0.3 in a lab-scale. The relative compaction was measured in 90.1%, which results for construction field have been generally acceptable. In this study, a large-scale Lysimeter($1.0m{\times}1.5m{\times}2.0m$) was used to simulate the effects of the layer on the freeze/thaw by -20 average temperature. The mixture after freezing/thawing showed compressive strength more than $5kg/cm^2$, which was satisfied with EPA standards. Initial permeability of CMDS was $7.10{\times}10^{-7}cm/s$ and permeability its mixture after freezing/thawing was increased to $9.80{\times}10^{-7}cm/s$. The change of temperature in the layers rises and falls with linear and temperature gradient keep maintain the present state. Moisture contents in the layers have not been radically changed. Through the leaching test determined by KSLT method, it was found that heavy metals excluding Zn and Ni were not leached out or leached out less than the standards during 7 cycles of freezing/thawing process. Since it shows the increased permeability about 1.5 times and slight change in moisture content, but it was satisfied with EPA standar through 7 cycles of freezing/thawing process, this mixture can be applied as a liner in landfill final cover system.

A Study on the Reinforcement Effect Analysis of Aging Reservoir using Grout Material recycled Power Plant Byproduct (발전부산물을 재활용한 그라우트재의 노후 저수지 보강효과 분석에 관한 연구)

  • Seo, Se-Gwan;An, Jong-Hwan;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.23-33
    • /
    • 2021
  • In Korea, many reservoirs have been built for the purpose of solving the food shortage problem and supplying agricultural water. However, the current 75.6% of the reservoirs are in serious aged as more than 50 years have passed since the year of construction. In the case of such an aging reservoir, the stability due to scour and erosion inside the reservoir is very reduced, and if concentrated rainfall due to recent abnormal weather occurs, the aging reservoir may collapse, leading to a lot of damage to property and human life. Accordingly, each agency that manages aging reservoirs uses Ordinary Portland Cement (OPC) as an injection material and applies the grouting method. However, in the case of OPC, it may deteriorate over time and water leakage may occur again. And there are environmental problems such as consumption of natural resources and generation of greenhouse gases. So, there is a need to develop new materials and methods that can replace the OPC. In this study, an laboratory test and analysis were performed on the grout material developed to induce a curing reaction similar to that of OPC by recycling power plant byproduct. In addition, test in the field such as electric resistivity survey, Standard Penetration Test (SPT), and field permeability test were performed to analyzed to reinforcement effect and determine the possibility of using instead of OPC. As a results of the test, in the case of recycled power plant byproduct, the compressive strength was 2.9 to 3.2 times and the deformation modulus was 2.3 to 3.3 times higher, indicating that it is excellent in strength and can be used instead of OPC. And it was analyzed that the N value of the reservoir was increased by 1~2, and the coefficient of permeability (k) decreased to the level of 8.9~42.5%. showing sufficient reinforcing effect in terms of order.