• 제목/요약/키워드: Compressive strength of cement

검색결과 2,518건 처리시간 0.029초

고로슬래그 미분말과 플라이애시를 사용한 비소성 시멘트 모르타르의 촉진 탄산화에 따른 압축 강도 특성 (Properties of Compressive Strength after Accelerated Carbonation of Non-Sintered Cement Mortar Using Blast Furnace Slag and Fly Ash)

  • 류지수;나형원;형원길
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.297-298
    • /
    • 2023
  • In the concrete industry, efforts are being made to reduce CO2 emissions, and technologies that collect, store, and utilize CO2 have recently been studied. This study analyzed the change in compressive strength after the accelerated carbonation test of Non-Sintered Cement(NSC) mortar. Type C Fly Ash and Type F Fly Ash were mixed in a 1:1 ratio and then mixed with Blast Furnace Slag fine powder to produce NSC. The mortar produced was cured underwater until the target age. In addition, an accelerated carbonation test was conducted under the condition of a concentration of 5 (±1.0%) of CO2 gas for 14 days. The mortar compressive strength was measured before and after 14 days of accelerated carbonation test based on the 7th and 28th days of age. As a result of the experiment, the compressive strength was improved in all binder. In general, the compressive strength of NSC mortar subjected to the accelerated carbonation test was similar to that of Ordinary Portland Cement(OPC) mortar not subjected to the accelerated carbonation test.

  • PDF

Modeling the compressive strength of cement mortar nano-composites

  • Alavi, Reza;Mirzadeh, Hamed
    • Computers and Concrete
    • /
    • 제10권1호
    • /
    • pp.49-57
    • /
    • 2012
  • Nano-particle-reinforced cement mortars have been the basis of research in recent years and a significant growth is expected in the future. Therefore, optimization and quantification of the effect of processing parameters and mixture ingredients on the performance of cement mortars are quite important. In this work, the effects of nano-silica, water/binder ratio, sand/binder ratio and aging (curing) time on the compressive strength of cement mortars were modeled by means of artificial neural network (ANN). The developed model can be conveniently used as a rough estimate at the stage of mix design in order to produce high quality and economical cement mortars.

화강암질 풍화토의 시멘트에 의한 안정처리에 관한 연구 (내구성을 중심으로) (The Study on Portland Cement Stabilization on the Weathered Granite Soils (on the Durability))

  • 도덕현
    • 한국농공학회지
    • /
    • 제22권3호
    • /
    • pp.60-74
    • /
    • 1980
  • Soil-cement mixtures involve problems in it's durability in grain size distribution and mineral composition of the used soils as well as in cement content, compaction energy, molding water content, and curing. As an attempt to solve the problems associated with durability of weathered granite soil with cement treated was investigated by conducting tests such as unconfined compression test, it's moisture, immers, wet-dry and freeze-thaw curing, mesurement of loss of weight with wet-dry and freeze-thaw by KS F criteria and CBR test with moisture curing on the five soil samples different in weathering and mineral composition. The experimental results are summarized as follows; The unconfined compressive strength was higher in moisture curing rather than in the immers and wet-dry, while it was lowest in freeze-thaw. Decreasing ratio of unconfined compressive strength in soil-cement mixtures were lowest in optimum moisture content or in the dry side rather than optimum moisture content with freeze-thaw. The highly significant ceofficient was obtained between the cement content and loss of weight with freeze-thaw and wet-dry. It was possible to obtain the durability of soil-cement mixtures, as the materials of base for roads, containing above 4 % of cement content, above 3Okg/cm$_2$ of unconfined compressive trength with seven days moisture curing or 12 cycle of freeze-thaw after it, above 100% of relative unconfined compressive strength, 80% of index of resistance, below 14% of loss of weight with 12 cycle of wet-dry and above 1. 80g/cm$_2$ of dry density.

  • PDF

플라이 애쉬를 활용한 알칼리 활성시멘트 콘크리트의 압축강도와 최적혼합비 (Compressive Strength and Optimal Mixing Ratio of Alkali Activated Cement Concrete Containing Fly Ash)

  • 한상호;박상숙;강화영
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권4호
    • /
    • pp.152-158
    • /
    • 2007
  • 본 연구는 알칼리 활성시멘트(Alkali Activated Cement)를 콘크리트에 활용하기 위한 기초적인 연구로서 잔골재 및 굵은골재의 혼합비는 일정하게 하고, 활성화제/플라이 애쉬의 혼합비, 그리고 활성화제 중 물유리, 수산화나트륨, 물의 혼합비를 변화시킨 AAC 콘크리트에 대한 압축강도를 측정하였다. 또한 각 변수에 따른 압축강도의 특성을 분석하고, AAC 콘크리트의 최적 혼합비를 구하였다. 그 결과 최대 압축강도 발현을 위한 활성화제 중 물유리, 수산화나트륨, 물의 최적 혼합비는 4.0:1.0:2.5 이었으며, 활성화제/플라이 애쉬의 최적 혼합비는 0.7 이었다.

Statistical Analysis of the Physical Properties in a Slag-OPC-Gypsum System as a Compound Mixing Ratio

  • You, Kwang-Suk;Lee, Kyung-Hoon;Han, Gi-Chun;Kim, Hwan;Ahn, Ji-Whan
    • 한국세라믹학회지
    • /
    • 제44권9호
    • /
    • pp.477-482
    • /
    • 2007
  • The effect of the mixing ratio of compounds in a slag-OPC-Gypsum system on the physical properties of Slag cement is investigated in this study. $Na_2SO_4$ was used as an alkali activator. Blast furnace slag cement was prepared from a mixture of blast furnace slag, ordinary Portland cement and anhydride gypsum. The fluidity and the compressive strength according to the ratio of each mixture were analyzed in statistical analyses in order to discover the parameters influencing the fluidity and compressive strength. The results showed that the hydration of blast furnace slag took place with the addition of $Na_2SO_4$ and that column-crystalline ettringite was created as the main hydration product of the blast furnace slag. In addition, it was found that the compressive strength of blast furnace slag cement tends to increase when the ordinary Portland cement content is higher up to three days. However, it is known that the compressive strength tends to increase as the blast furnace slag content becomes higher with increases in the level of OPC after 28 days. As a result of this analysis, it is believed that the ordinary Portland cement content influences the initial compressive strength of blast furnace slag cement, and that in later days this is highly influenced by the slag content.

알칼리활성화제 치환율에 따른 무시멘트 다공성 콘크리트의 물리·역학적 특성 (Physical and Mechanical Properties of Non-Cement Porous Concrete with Alkali-Activator Contents)

  • 김동현;김춘수;박찬기
    • 한국농공학회논문집
    • /
    • 제55권2호
    • /
    • pp.59-64
    • /
    • 2013
  • The present study is to evaluate physical and mechanical properties of porous concrete having non cement that mainly causes carbon emission. This study aims to explore eco-friendly concrete technology capable of reducing the amount of carbon emission due to the use of normal cement by substituting it with non cement porous concrete to which alkali-activator and blast-furnace slag powder are impregnated. As experimental variables, 5 %, 6 %, 7 %, 8 %, 9 % and 10 % of alkali-activator were substituted as binders and applied. Testing evaluated in this study were pH value, void ratio, compressive strength and residual compressive strength shown after being immersed in $H_2SO_4$ solution and $Na_2SO_4$ solution. The test results were compared with those tested with the use of porous concrete to which 400 $kg/m^3$ of unit cement amount was applied as binder. In consequence, it was concluded that; as for pH value, it was decreased than was the case in which cement was used, but increased with the more the use of alkali activator; as for void ratio and compressive strength, the mix proportion in which 9 % and 10 % of alkali activator were applied in terms of substitution ratio showed the result similar to the mixture in which 400 $kg/m^3$ of unit cement ratio was applied; and, as for residual compressive strength in the case of being immersed in $H_2SO_4$ solution and $Na_2SO_4$ solution, the compressive strength was increased, thus leading to improved chemical resistance.

Unconfined compressive strength property and its mechanism of construction waste stabilized lightweight soil

  • Zhao, Xiaoqing;Zhao, Gui;Li, Jiawei;Zhang, Peng
    • Geomechanics and Engineering
    • /
    • 제19권4호
    • /
    • pp.307-314
    • /
    • 2019
  • Light construction waste (LCW) particles are pieces of light concrete or insulation wall with light quality and certain strength, containing rich isolated and disconnected pores. Mixing LCW particles with soil can be one of the alternative lightweight soils. It can lighten and stabilize the deep-thick soft soil in-situ. In this study, the unconfined compressive strength (UCS) and its mechanism of Construction Waste Stabilized Lightweight Soil (CWSLS) are investigated. According to the prescription design, totally 35 sets of specimens are tested for the index of dry density (DD) and unconfined compressive strength (UCS). The results show that the DD of CWSLS is mainly affected by LCW content, and it decreases obviously with the increase of LCW content, while increases slightly with the increase of cement content. The UCS of CWSLS first increases and then decreases with the increase of LCW content, existing a peak value. The UCS increases linearly with the increase of cement content, while the strength growth rate is dramatically affected by the different LCW contents. The UCS of CWSLS mainly comes from the skeleton impaction of LCW particles and the gelation of soil-cement composite slurry. According to the distribution of LCW particles and soil-cement composite slurry, CWSLS specimens are divided into three structures: "suspend-dense" structure, "framework-dense" structure and "framework-pore" structure.

생체모방 폴리머의 구조 분석 및 폴리머 혼입율에 따른 시멘트 모르타르의 특성 변화 (Strength, Carbonation Resistance, and Chloride-Ion Penetrability of Cement Mortars Containing Catechol-Functionalized Chitosan Polymer)

  • 방은지;최세진;고혜민
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.253-254
    • /
    • 2022
  • In this study, catechol-functionalized chitosan (Cat-Chit), a well-known bioinspired polymer that imitates the basic structures and functions of living organisms and biological materials in nature, was synthesized and combined with cement mortar in various proportions. The compressive strength, tensile strength, drying shrinkage, accelerated carbonation depth, and chloride-ion penetrability of these mixes were then evaluated. In the ultraviolet-visible spectra, a maximum absorption peak appeared at 280 nm, corresponding to catechol conjugation. The sample containing 7.5% Cat-Chit polymer in water (CPW) exhibited the highest compressive strength, and its 28-day compressive strength was ~20.2% higher than that of a control sample with no added polymer. The tensile strength of the samples containing 5% or more CPW was ~2.3-11.5% higher than that of the control sample. Additionally, all the Cat-Chit polymer mixtures exhibited lower carbonation depths than compared to the control sample. The total charge passing through the samples decreased as the amount of CPW increased. Thus, incorporating this polymer effectively improved the mechanical properties, carbonation resistance, and chloride-ion penetration resistance of cement mortar.

  • PDF

상전이물질을 혼입한 시멘트 모르타르의 수화발열 및 강도 특성 평가 (Hydration Heat and Strength Characteristics of Cement Mortar with Phase Change Materials(PCMs))

  • 장석준;김병선;김선웅;박완신;윤현도
    • 콘크리트학회논문집
    • /
    • 제28권6호
    • /
    • pp.665-672
    • /
    • 2016
  • 본 연구는 상전이물질이 시멘트 모르타르의 수화특성 및 강도특성에 미치는 영향을 평가하기 위하여 실시되었다. 이를 위하여 바륨 및 스트론튬계 상전이물질을 사용하였으며, 상전이물질 혼입률 1~5%에 대한 실험을 수행하였으며, 시멘트 모르타르 작업성 평가, 간이단열온도상승 실험, 압축 및 휨 강도 평가를 실시하였다. 실험결과 상전이물질의 혼입은 시멘트 모르타르의 수화열 감소에 효과적인 것으로 나타났으며, 바륨 기반 PCM을 사용할 경우 흐름성능이 다소 감소하는 것으로 나타났다. 압축 휨 강도의 경우 상전이물질의 혼입률이 증가함에 따라 감소하는 경향을 나타내었으며, PCM을 사용할 경우 혼입률에 따라 압축강도 발현추이의 변화가 발생하였다. 따라서 본 연구에서는 상전이물질이 혼입률에 따른 압축강도 추정식을 제시하였다.

황산 중화 레드머드 첨가량에 따른 시멘트 페이스트의 역학적 특성 (Mechanical Properties of Cement Paste according to the amount of Red mud Neutralized with Sulfuric Acid)

  • 인병은;김상진;강석표
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.21-22
    • /
    • 2022
  • In order to improve the strength degradation of the cement-based material to which strong alkaline liquid red mud was added, the liquid red mud was neutralized with sulfuric acid and added to the cement paste to examine the mechanical properties according to the amount added. As a result of measuring the compressive strength, the strength was higher when the red mud was neutralized with sulfuric acid and added to the cement paste than the cement paste to which the liquid red mud was added. As a result of hydration heat measurement, when red mud was neutralized with sulfuric acid and added to the cement paste, an initial strength higher than that of liquid red mud was expressed.

  • PDF