• 제목/요약/키워드: Compressive strength Size

검색결과 712건 처리시간 0.025초

홀을 갖는 복합재 적층판의 압축강도에 대한 크기 효과에 관한 연구 (Size Effects on the Compressive Strength of Composite Plates with an Open Hole)

  • 공창덕;방조혁;이정환
    • 한국추진공학회지
    • /
    • 제5권1호
    • /
    • pp.42-48
    • /
    • 2001
  • 지난 20년 동안 인장하중과 굽힘 하중 상태에서 복합재료 적층판의 크기효과에 관한 많은 연구가 수행되었으며, 시편의 크기를 증가함에 따라 복합재 적층판의 강도가 저하되는 경향은 잘 알려져 있다. 그러나, 복합재 압축시험의 어려움으로 인해 압축하중 상태에서 시편의 파괴강도에 대한 크기효과에 관한 연구는 거의 수행되지 않았다. 본 연구에서는 홀을 갖는 복합재의 압축 강도에 대한 크기 효과를 고찰하기 위해 T300/924C, $>[45/-45/0/90]_{3S}$를 사용하였으며, 시편의 크기 변화를 위해 2차원면적 변화(시편의 폭 및 길이 변화)를 고려하는 평면 스케일링 방법을 사용하였다. 실험 결과는 유한폭을 가지는 평판에 대한 명확한 홀 크기 효과를 보였을 뿐만 아니라, 같은 a/W(홀 직경/시편 폭)를 갖는 시편에서도 크기 효과를 확인할 수 있었다. 반면에, 홀이 없는 시편은 명확한 강도 크기 효과를 보이지 않았다.

  • PDF

스트럿-타이 모델에 의한 개구부를 갖는 깊은 보의 극한강도 예측 (Prediction of Ultimate Strength of Concrete Deep Beams with an Opening Using Strut-and-Tie Model)

  • 지호석;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.189-194
    • /
    • 2001
  • In this study, ultimate strength of concrete deep beams with an opening is predicted by using Strut-and-Tie Model with a new effective compressive strength. First crack occurs around an opening by stress concentration due to geometric discontinuity. This results in decreasing ultimate strength of deep beams with an opening compared with general deep beams. With fundamental notion that ultimate strength of deep beam with an opening decreases as a result of reduction in effective compressive strength of a concrete strut, an equivalent effective compressive strength formula is proposed in order to reflect ultimate strength reduction due to an opening located in a concrete strut. An equivalent effective compressive strength formula which can reflect opening size and position is added to a testified algorithm of predicting ultimate strength of concrete deep beams. Therefore, ultimate strength of concrete deep beam with an opening is predicted by using a simple and rational STM algorithm including an equivalent effective compressive strength formula, not by finite element analysis or a former complex Strut-and-Tie Model

  • PDF

부재의 깊이가 콘크리트의 휨압축강도에 미치는 영향 (Effects of Specimen Depth on Flexural Compressive Strength of Concrete)

  • 이성태;김진근;김장호
    • 콘크리트학회논문집
    • /
    • 제12권5호
    • /
    • pp.121-130
    • /
    • 2000
  • Currently, in evaluating a flexural strength of a concrete member, the effect of specimen depth has not been systematically studied, even though its effect on ultimate strength of a section is very important. For all types of loading conditions, the trend is that the strength of a member tends to decrease when the member depth increases. In this study, the influence of specimen depth on flexural compressive strength of concrete member was examined experimentally. A series of C-shaped specimens subjected to axial compressive force and bending moment were tested using three geometrically similar specimens with different length-to depth ratios (h/c = 1, 2 and 4) which have compressive strength of 55 MPa. The results indicate that the flexural compressive strength decreased as the specimen depth increased. A model equation was derived based on regression analyses of the experimental data. Also, the results show that ultimate strain decreases as the specimen depth increases. Finally, a general model equation for the depth effect is proposed.

플라이애시 입도가 압축강도에 미치는 영향 (Effect of the Fineness of Fly Ash on the Compressive Strength)

  • 조영근;김호규;김영안
    • 한국건설순환자원학회논문집
    • /
    • 제5권3호
    • /
    • pp.313-319
    • /
    • 2017
  • 일반적으로 플라이애시의 입도, 화학성분, 비정질양, 비정질 Si, Al 양등 매우 다양한 요인이 시멘트와의 반응에 영향을 미치고 있다. 본 연구에서는 플라이애시의 입자 특성이 압축강도에 미치는 영향을 확인하고자 한다. 표준사를 플라이애시와 유사한 입도로 분쇄하여 플라이애시와 동일하게 시멘트와 배합하여 압축강도를 측정하였다. 측정된 압축강도 결과 값을 사용하여 시멘트 수화반응에 의한 강도와 입자 충진 효과에 의한 강도 증진을 확인하였다. 표준사 분말을 치환한 모르타르의 압축강도 결과를 활용하여 플라이애시의 포졸란 반응에 의한 강도 증가분을 계산하였다. 이러한 결과 값과 플라이애시의 입자 특성을 비교한 결과, 분말도는 압축강도와 약한 상관성을 보이고 있으며, PI(Pozzolanic Index)는 10% 통과직경(D10)과 50% 통과직경(D50)과 좋은 상관관계를 나타내었다. 따라서 향후 PI와 D10과의 상관성은 플라이애시의 화학적 특성과 함께 플라이애시 특성을 파악하는 좋은 수단이 될 것으로 판단된다.

공동골격을 가진 개방셀 세라믹스의 상대밀도와 압축강도 모델 (Models for Relative Density and Compressive Strength of Open-Cell Ceramics with Hollow Struts)

  • 정한남;현상훈
    • 한국세라믹학회지
    • /
    • 제34권11호
    • /
    • pp.1139-1150
    • /
    • 1997
  • A model for predicting the relative density and the compressive strength of open-cell ceramics with three-dimensional network structure was proposed through the interpretation of their macrostructure and fracture mechanics. The equation predicting the relative density was derived under the assumption that the open-cell structure was a periodic array of the tetrakaidecahedron unit cell consisting of cylindrical struts containing the internal hollow with the shape of a triangular prism. The model for compressive strength of open-cell ceramics with the hollow strut was also developed by modifying conventional model which based on fracture behavior of them subjected to the compressive stress. Both the relative density and the compressive strength were expressed in terms of the ratio of the strut diameter to the length together with the ratio of the hollow size to the strut diameter. The proposed model for the relative density and the compressive strength of the alumina-zirconia composite with open-cell structure were accorded well with the experimental values, whereas Gibson-Ashby and Zhang's model did not show such a good agreement.

  • PDF

Mix Design for Pervious Recycled Aggregate Concrete

  • Sriravindrarajah, Rasiah;Wang, Neo Derek Huai;Ervin, Lai Jian Wen
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권4호
    • /
    • pp.239-246
    • /
    • 2012
  • Pervious concrete is a tailored-property concrete with high water permeability which allow the passage of water to flow through easily through the existing interconnected large pore structure. This paper reports the results of an experimental investigation into the development of pervious concrete with reduced cement content and recycled concrete aggregate for sustainable permeable pavement construction. High fineness ground granulated blast furnace slag was used to replace up to 70 % cement by weight. The properties of the pervious concrete were evaluated by determining the compressive strength at 7 and 28 days, void content and water permeability under falling head. The compressive strength of pervious concrete increased with a reduction in the maximum aggregate size from 20 to 13 mm. The relationship between 28-day compressive strength and porosity for pervious concrete was adversely affected by the use of recycled concrete aggregate instead of natural aggregate. However, the binder materials type, age, aggregate size and test specimen shape had marginal effect on the strength-porosity relationship. The results also showed that the water permeability of pervious concrete is primarily influenced by the porosity and not affected by the use of recycled concrete aggregate in place of natural aggregate. The empirical inter-relationships developed among porosity, compressive strength and water permeability could be used in the mix design of pervious concrete with either natural or recycled concrete aggregates to meet the specification requirements of compressive strength and water permeability.

LSI 공법으로 제작된 C/SiC 복합재의 압축거동 평가 (Compressive Fracture Behavior of C/SiC composite fabricated by Liquid Silicon Infiltration)

  • 윤동현;김재훈
    • 한국안전학회지
    • /
    • 제33권1호
    • /
    • pp.1-6
    • /
    • 2018
  • The effects of the fiber direction, specimen size and temperature on the compressive strength of carbon fiber reinforced silicon carbide composite (C/SiC composite) manufactured by liquid silicon infiltration(LSI) is investigated. Tests were conducted in accordance with ASTM C 695 at room temperature and elevated temperatures. Experiments are conducted with two different specimens considering grain direction. With grain (W/G) specimens have a carbon fibers parallel to the load direction, but across grain (A/G) specimens have a perpendicular carbon fibers. To verify the specimen size effect of C/SiC composite, two types of specimens are manufactured. One has a one to two ratio of diameter to height and the other has a one to one ratio. The compressive strength of C/SiC composite increased as temperature rise. As specimens are larger, compressive strength of A/G specimens increased, however compressive strength of W/G decreased.

혼합재 및 입도에 따른 경량기포콘크리트의 강도특성 개선 (Improvement of Strength in ALC using Admixtures and Grain Size)

  • 김영엽;송훈;이종규;추용식
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2007년도 추계 학술논문 발표대회
    • /
    • pp.79-82
    • /
    • 2007
  • Recently, the use of ALC has became increasingly popular. ALC is a unique building material. Because of its cellular nature, it is lightweight, self-insulating, sound and fireproof, as well as insect and mold resistant. Furthermore, ALC is free of VOCs and various fibers associated with wood and glass wool construction. However, ALC have high water absorption, low compressive strength and popout the origin of the low surface strength in its properties. These properties make troubles under construction such as cracking and popout. Thus, this study is to improve the fundamental strength by controls of increasing of admixtures, and grain size. Admixtures make use of metakaolin, silica fume, sodium silicate and sodium hydroxide. From the test result, the ALC using admixture have a good fundamental properties compared with plain specimen. Compressive strength, specific strength and abrasion's ratio were improved depending on increasing admixtures ratio's, and grain size.

  • PDF

입도와 흑연 첨가제에 따른 유해 입자 및 가스 동시제거용 세라믹필터 특성평가 (Characteristics of the Ceramic Filter with the Control of Particle Size and Graphite Additive for the Hazardous Particle and Gas Removal)

  • 조을훈;이근재
    • 한국분말재료학회지
    • /
    • 제21권6호
    • /
    • pp.454-459
    • /
    • 2014
  • In this study, the porous ceramic filter was developed to be able to remove both dust and hazardous gas contained in fuel gas at high temperature. The porous ceramic filters were fabricated and used as a catalyst support. And the effects have been investigated such as the mean particle size, organic content and addition of foaming agent on the porosity, compressive strength and pressure drop of ceramic filters. With the increase of mean powder size and the organic content for the cordierite filter, the porosity was increased, but the compressive strength and pressure drop were decreased. From the results of the research, the optimum condition for the fabrication of ceramic filters could be acquired and they had the porosity of 58%, the compressive strength of 13.4 MPa and the pressure drop of 250 Pa. It was expected that this ceramic filter was able to be applied to the glass melting furnace, combustor, and dust/toxic gas removal filter.

Effect of specimen geometry and specimen preparation on the concrete compressive strength test

  • Aslani, Farhad;Maia, Lino;Santos, José
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.97-106
    • /
    • 2017
  • This paper discusses an experimental programme that was carried out to study the effects of specimen size-shape and type of moulds on the compressive strength of concrete. For this purpose, cube specimens with 150 mm dimensions, cylinder specimens with $150{\times}300mm$ dimensions, and prism specimens with $150{\times}150{\times}375mm$ dimensions were prepared. The experimental programme was carried out with several concrete compositions belonging to strength classes C20/25, C25/30, C30/37, C40/50 and C60/75. Furthermore, the test results were curve-fitted using the least squares method to obtain the new parameters for the modified size effect law.