• Title/Summary/Keyword: Compressive properties

Search Result 4,072, Processing Time 0.03 seconds

AN EXPERIMENTAL STUDY ON PHYSICAL PROPERTIES OF VARIOUS POSTERIOR RESTORATIVE COMPOSITE RESINS (수종(數種) 구치부(臼齒部) 충전용(充塡用) 복합(複合)레진의 물리적(物理的) 성질(性質)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Park, Sun-Jae;Park, Sang-Jin;Min, Byang-Soon;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.12 no.1
    • /
    • pp.7-24
    • /
    • 1986
  • The purpose of this study was to observe the compressive strength, compressive fatigue strength, surface hardness, water sorption and solubility of eight different posterior restorative composite resins. Eight composite resins were tested for their strength of the compressive and compressive fatigue with prepared two different types of specimens (I and T-type) using a Instron universal testing machine (model No. 1332). The hardness was measured with a Knoop hardness tester (MVH-2, Tokyo) for each cylindrical specimen, 7mm in diameter and 5mm thick. The water sorption and solubility were evaluated with the prepared composite resin disks, 20mm in diameter and 1mm thick. The results were as follows: 1. The compressive strength, compressive fatigue strength and hardness were noticed to be Increased by increasing the volume content of filler. 2. The compressive strength was appeared to be independent on the type of specimen, but the compressive fatigue strength was found to be greatly influenced by the type of specimens. 3. The composite resins having higher compressive strength had also higher compressive fatigue limits. 4. The compressive fatigue limits at $10^5$ stress cycles were about 50-80% of the compressive strength and were showen to be dependent on the materials and type of specimens. 5. The larger the filler particle size was, the lower was the water sorption. And the water sorption of BIS-GMA resin was higher than that of urethane resin. 6. The visible light-cured composite resin had a higher value of solubility than the chemically- cured composite resin. And the solubility tended to decrease by increasing the volume content of filler.

  • PDF

Modeling of ultimate value and kinetic of compressive strength and hydration heat of concrete made with different replacement rates of silica fume and w/b ratios

  • Djezzar, Mahdjoub;Ezziane, Karim;Kadri, Abdelkader;Kadri, El-Hadj
    • Advances in concrete construction
    • /
    • v.6 no.3
    • /
    • pp.297-309
    • /
    • 2018
  • The objective of this study was to evaluate the influence of silica fume (SF) on the hydration heat and compressive strength of concrete. Portland cement with w/(c+sf) ratios varying between 0.25 to 0.45 was substituted by 10%, 20% and 30% of SF by mass. A superplasticizer was used to maintain a fluid consistency of the concrete. The heat of hydration was monitored continuously by a semi-adiabatic calorimetric method for 10 days at $20^{\circ}C$. Compressive strengths are tested for each mixture until age of 180 days. The results show that silica fume considerably influences the evolution and the ultimate values of the compressive strengths as well as the hydration heat especially for 10% rate. The w/b ratio has a considerable effect where its decrease modifies compressive strength and hydration heat more than silica fume. The correlation of the obtained results allows deducing of ultimate properties as well as the ages to reach half of their values. The correlation coefficients are close to unity and reflect the judicious choice of these relationships to be used to predict compressive strength and hydration heat.

Compressive Strength Control of High Strength Concrete Structure Using Samples with Isolated Junction Test (고강도콘크리트 벽체부재에 접합분리 시험체를 활용한 강도관리에 관한 연구)

  • Ki, Jun-Do;Kim, Hak-Young;Kim, Kwang-Ki;Paik, Min Su;Lim, Nam Gi;Jung, Sang Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.47-50
    • /
    • 2009
  • The existing techniques used to estimate and manage the compressive strength of concrete do not include the environmental factors that influence the development of compressive strength and the compressive strength itself. Thus, it is necessary to develop a reasonable yet simple way to measure the compressive strength of concrete structures at construction sites by considering concrete's mechanical properties and curing environment. This study was conducted to propose an acrylic form and a junction isolation mold with crack-inducing boards that uses non-destructive methods to create and collect concrete test samples that are cured in the same condition as the actual concrete structures. junction isolation molds were used in high-strength and super high-strength concrete to evaluate the reliability of compressive strength evaluation on the test sample. The following were the findings of this study:

  • PDF

Experimental study for ZnO nanofibers effect on the smart and mechanical properties of concrete

  • Arbabi, Amir;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.97-104
    • /
    • 2020
  • Due to the superior properties of nanoparticles, using them has been increased in concrete production technology. In this study, the effect of zinc oxide (ZnO) nanoparticles on the mechanical and smart properties of concrete was studied. At the first, the ZnO nanoparticles are dispersed in water using shaker, magnetic stirrer and ultrasonic devices. The nanoparticles with 3.5, 0.25, 0.75, and 1.0 volume percent are added to the concrete mixture and replaced by the appropriate amount of cement to compare with the control sample without any additives. In order to study the mechanical and smart properties of the concrete, the cubic samples for determining the compressive strength and cylindrical samples for determining tensile strength with different amounts of ZnO nanoparticles are produced and tested. The most important finding of this paper is about the smartness of the concrete due to the piezoelectric properties of the ZnO nanoparticles. In other words, the concrete in this study can produce the voltage when subjected to mechanical load and vice versa it can induce the mechanical displacement when subjected to external voltage. The experimental results show that the best volume percent for ZnO nanoparticles in 28-day samples is 0.5%. In other words, adding 0.5% ZnO nanoparticles to the concrete instead of cement leads to increases of 18.70% and 3.77% in the compressive and tensile strengths, respectively. In addition, it shows the best direct and reverse piezoelectric properties. It is also worth to mention that adding 3.5% zinc oxide nanoparticles, the setting of cement is stopped in the concrete mixture.

Banana agriculture waste as eco-friendly material in fibre-reinforced concrete: An experimental study

  • Mohammed M., Attia;Abd Al-Kader A., Al Sayed;Bassam A., Tayeh;Shymaa M.M., Shawky
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.355-368
    • /
    • 2022
  • This paper investigates the impact of length and volume fractions (VFs) of banana fibres (BFs) on the mechanical and physical properties of concrete. The mechanical properties were compressive strength, splitting tensile, flexural strength, and bond stress, while the physical properties were unit weight and absorption. The slump test was used to determine workability. The concrete's behaviour with BFs was studied using scanning electron microscopy. Experimental work of concrete mixtures with BFs of various lengths (12 mm, 25 mm, and 35 mm) and VFs (0%, 0.5%, 1.0%, and 1.5%) were carried out. The samples did not indicate any agglomeration of fibres or heterogeneity during mixing. The addition of BFs to concrete with VFs of up to 1.50% for all fibre lengths have a significant impact on mechanical properties, also the longer fibres performed better than shorter ones at all volume fractions of BFs. The mix10, which contain BFs with VFs 1.5% and length 35 mm, demonstrated the highest mechanical properties. The compressive strength, splitting tensile, flexural strength, and bond stress of the mix10 were 37.71 MPa, 4.27 Mpa, 6.12 MPa, and 6.75 MPa, an increase of 7.37%, 20.96%, 24.13%, and 11.2% over the reference concrete, which was 35.12 MPa, 3.53 MPa, 4.93 MPa, and 6.07 MP, respectively. The absorption is increased for all lengths by increasing the VFs up to 1.5%. Longer fibres have lower absorption, while shorter fibres have higher absorption. The mix8 had the highest absorption of 4.52%, compared to 3.12% for the control mix. Furthermore, the microstructure of concrete was improved through improved bonding between the fibres and the matrix, which resulted in improved mechanical properties of the composite.

STUDY ON THE PROPERTIES OF GYPSUM-BONDED DENTAL INVESTMENTS (치과용 석고계 매몰재의 특성에 관한 연구)

  • Kim, Kyoung-Sun;Woo, Yi-Hyung;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.1
    • /
    • pp.137-163
    • /
    • 1990
  • The properties of a investment material can be described by the consistency at the slurry state, the setting time, the compressive strength and the thermal expansion during the casting. In this study the effect of the production parameters which are included the ratio of quartz and cristobalite, the content of binder, the water powder ratio and the content and concentration of additives on the Properties of the gypsum-bonded investments has been investigated with help of the consistency test, the vicat needle test, the compressive strength test, the thermal expansion test, x-ray diffraction and DTA thermal differential test. The experimental results showed that the constitution of a investment with W/P ratio of 0.34, 30% of gypsum, 0.8% aluminium sulfate, 2% magnesium sulfate, 0.6% sodium phosphate was adapted for the properties of the KDA Spec. No. 13 type I investment. The important experimental results are summarized as follows. 1. The consistency of the investment decreased with increasing amount of aluminium sulfate and decreasing amount of sodium phosphate. An addition of magnesium sulfate up to 2% an increase of the consistency was shown. But 3% magnesium sulfate in investment showed a decrease of the consistency. The consistency did not vary significantly with a variation of the content of gypsum and cristobalite and the W/P ratio. 2. Aluminium sulfate and the magnesium sulfate promoted the hardening and the aluminium phosphate delayed the hardening. The setting time increased with amount of gypsum. The effect of the matrix on the setting time was insignificant. With the W/P ratio of 0.34 the setting time was 14 min. 3. The compressive strength decreased with the amount of aluminium sulfate up to 0.25% and increased with the amount of aluminium sulfate greater than 3%. The compressive strength decreased as decreasing the amount of magnesium sulfate and gypsum and as increasing the W/P ratio. The effect of the refractory on the compressive strength was also not significant. With the W/P ratio of 0.34 the compressive strength was $34Kg/mm^2$. 4. The 1st thermal expansion was found at the temperature near and the steady state or the contraction stage was found at the temperature between $250^{\circ}C$ and $500^{\circ}C$. After this stage the 2nd thermal expansion took place at the temperature near $500^{\circ}C$. The amount of thermal expansion increased with decreasing the content of magnesium sulfate, aluminium sulfate and gypsum and the W/P ratio. And the amount of thermal expansion increased as the content of sodium phosphate and cristobalite. With the W/P ratio of 0.34 the amount of total expansion was 1.2%.

  • PDF

The Strength and Length Change Properties of Recycled Aggregate Concrete(RAC) by Compressive Strength Levels (압축강도 수준별 순환골재 콘크리트의 강도와 길이변화 특성)

  • Lee, Bong-Chun;Lee, Jun;Cho, Young-Keun;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.307-312
    • /
    • 2015
  • This paper addresses mechanical properties and length change performance of the recycled aggregate concretes(RAC) in which natural coarse was replaced by recycled coarse aggregate(RCA) by compressive strength levels(20, 35, 50 MPa). A total of 9 RAC were produced and classified into three series, each of which included three mixes designed with three compressive strength levels of 20 MPa, 35 MPa and 50 MPa and three RCA replacement ratios of 0, 50 and 100%. Physical/Mechanical properties of RAC were tested for slump test, compressive strength, and length change. The test results indicated that the workability of RC could be improved or same by RCA replacement ratios, when compared with that containing no RCA. This is probably because of the RCA shape improving the workability of RAC. Also, the test results showed that the compressive strength was decreased by 9~10% as the RCA replacement ratios increase. However, the length change ratio by the RCA replacement ratios increased regardless of compressive strength levels. At 20 MPa level, the length change ratio was 8~40% which was much higher than that of 4~17% at both 35 and 50 MPa levels. Therefore, it was considered that such admixture addition preventing dry shrinkage is required in order to improve the properties of the RAC at 20 MPa level.

STUDY ON THE PROPERTIES OF GYPSUM-BONDED DENTAL INVESTMENTS (치과용 석고계 매몰재의 특성에 관한 연구)

  • Kim, Kyoung-Sun;Woo, Yi-Hyung;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.1
    • /
    • pp.139-165
    • /
    • 1991
  • The properties of a investment material can be described by the consistency at the slurry state, the setting time, the compressive strength and the thermal expansion during the casting. In this study the effect of the production parameters which are included the ratio of quartz and cristobalite, the content of binder, the water powder ratio and the content and concentration of additives on the properties of the gypsum-bonded investments has been investigated with help of the consistency test, the vicat needle test, the compressive strength test, the thermal expansion test, x-ray diffraction and DTA thermal differential test. The experimental results showed that the constitution of a investment with W/P ratio of 0.34, 30% of gypsum, 0.8% aluminium sulfate, 2% magnesium sulfate, 0.6% sodium phosphate was adapted for the properties of the KDA Spec. No. 13 type I investment. The important experimental results are summarized as follows. 1. The consistency of the investment decreased with increasing amount of aluminium sulfate and decreasing amount of sodium phosphate. An addition of magnesium sulfate up to 2% an increase of the consistency was shown. But 3% magnesium sulfate in investment showed a decrease of consistency. The consistency did not vary significantly with a variation of the content of gypsum and cristobalite and the W/P ratio. 2. Aluminium sulfata and the magnesium sulfate promoted the hardening and the aluminium phoshpate delayed the hardening. The setting time increased with amount of gypsum. The effect of the matrix on the setting time was insignificant. With the W/P ratio of 0.34 the setting time was 14 min. 3. The compressive strength decreased with the amount of aluminium sulfate up to 0.25% and increased with the amount of aluminium sulfate greater than 3%. The compressive strength decreased as decreasing the amount of magnesium sulfate and gypsum and as increasing the W/P ratio. The effect fo the refractory on the compressive strength was also not significant. With the W/P ratio of 0.34 the compressive strength was $34Kg/mm^2$. 4. The 1st thermal expansion was found at the temperature near $250^{\circ}C$ and the steady state or the contraction stage was found at the temperature between $250^{\circ}C$ and $500^{\circ}C$. After this stage the 2nd thermal expansion took place at the temperature near $500^{\circ}C$. The amount of thermal expansion increased with decreasing the content of magnesium sulfate, aluminium sulfate and gypsum and the W/P ratio. And the amount of thermal expansion increased as the content of sodium phosphate ad cristobalite. With the W/P ratio of 0.34 the amount of total expansion was 1.2%.

  • PDF

Modeling of Material Properties of Fiber-Reinforced High Strength Concrete (섬유 보강 고강도 콘크리트의 재료 특성 모델링)

  • Yang, In-Hwan;Park, Ji-Hun;Choe, Jeong-Seon;Joh, Changbin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.349-356
    • /
    • 2018
  • In this study, material properties of steel fiber reinforced high strength concrete (FRHSC) with the compressive strength of about 120MPa were modeled. Steel fiber content of 1.0%, 1.5%, and 2.0% was considered as experimental variable. First of all, compressive strength tests were carried out to determine compressive characteristics of concrete, and compressive stress-strain curves were modeled. For conventional concrete with moderate compressive strength, the stress-strain curves are in the form of parabolic curves, but in the case of high strength concrete reinforced with steel fiber, the curves increase linearly in the form of the straight line. In addition, to understand the tensile properties of FRHSC, the crack mouth opening displacement (CMOD) test was performed, and the tensile stress-CMOD curve was calculated through inverse analysis. When the steel fiber content increased from 1.0% to 1.5%, there was a significant difference of tensile strength. However, when the amount of steel fiber was increased from 1.5% to 2.0%, there was no significant difference of tensile strength, which might result from the poor dispersion and arrangement of steel fiber in concrete.

Evaluation of incorporating metakaolin to evaluate durability and mechanical properties of concrete

  • Joshaghani, Alireza;Moeini, Mohammad Amin;Balapour, Mohammad
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.241-255
    • /
    • 2017
  • Concrete is known to be the most used construction material worldwide. The environmental and economic aspects of Ordinary Portland Cement (OPC) containing concrete have led research studies to investigate the possibility of incorporating supplementary cementitious materials (SCMs) in concrete. Metakaolin (MK) is one SCM with high pozzolanic reactivity generated throughout the thermal activation of high purity kaolinite clay at a temperature ranging from $500^{\circ}C$ to $800^{\circ}C$. Although many studies have evaluated the effect of MK on mechanical properties of concrete and have reported positive effects, limited articles are considering the effect of MK on durability properties of concrete. Considering the lifetime assessment of concrete structures, the durability of concrete has become of particular interest recently. In the present work, the influences of MK on mechanical and durability properties of concrete mixtures are evaluated. Various experiments such as slump flow test, compressive strength, water permeability, freeze and thaw cycles, rapid chloride penetration and surface resistivity tests were carried out to determine mechanical and durability properties of concretes. Concretes made with the incorporation of MK revealed better mechanical and durability properties compared to control concretes due to combined pozzolanic reactivity and the filler effect of MK.