• Title/Summary/Keyword: Compressive pressure

Search Result 608, Processing Time 0.163 seconds

Cycling life prediction method considering compressive residual stress on liner for the filament-wound composite cylinders with metal liner (금속재 라이너를 갖는 복합재 압력용기의 라이너 압축잔류응력을 고려한 반복수명 예측 방법에 대한 연구)

  • Park, Ji-Sang;Jeung, Sang-Su;Chung, Jae-Han
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.22-28
    • /
    • 2006
  • In manufacturing process of composite cylinders with metal liner, the autofrettage process which induces compressive residual stress on the liner to improve cycling life can be applied. In this study, a finite element analysis technique is presented, which can predict accurately the compressive residual stress on the liner induced by autofrettage and stress behavior after. Material and geometrical non-linearity is considered in the finite element analysis, and the Von-Mises stress of a liner is introduced as a key parameter that determines pressure cycling life of composite cylinders. Presented methodology is verified through fatigue test of liner material and pressure cycling test of composite cylinders.

Mechanical Properties of Reclaimed Plastic Concrete (재생수지콘크리트의 역학적 성질에 관한 연구)

  • 전진영;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.4
    • /
    • pp.132-141
    • /
    • 1987
  • The objective of the study was to obtain the compressive the tensile and the fleniril strengthes, thermal resistance, chemical resistance and fire resistance of the reclaimed plastic corcrete in order to investigate the feasibility as a new construction material This reclaimed plastic concrete is a compositive material which is composed of sand and blend of 50% of LDPE(Low density polyethylene) and 50% of HDPE (High density polyethylene) which are inexpensive and easy to reclaim. The results obtained in the study are summarized as follows: 1. As the binder content ranging from 20 to 40 % increase, the compresie, the splitting tensile and the flexural strengthes were increased. The compressive strenzth of the specimen tested was the highest and flexural strength the next and tensile strength the lowest 2. The compressive, the tensile and flexural strengthes of specimens made of fine sand were higher than those of coarse sand. The compressive, the tensile and the flexural strengthes of specimens made of high pressure molding were higher than those of low pressure molding. 3.In comparison with different additives, the specimens with carbon black was excellent and B. H. T. good and ferric oxide poor for thermal resistance. 4. In relationship between the flexural strength with varying temperature from -23$^{\circ}C$ to 80$^{\circ}C$. The flexural strengthes were decreared as temperature increased at 25 %, 30 % and 35 % of binder contents, respectively. Especially at 60$^{\circ}C$, the flexural strength was significantly decreased. 5. The decrement of flexural strengthes and the weight losses after 7 days immersion in acid or alkali solutions were not significant. 6. Fire resistance of the reclaimed plastic concrete was not significantly influenced by the contents of sand. However, the fire resistance of the reclaimed plastic concrete was depend upon melting and ignition properties of the binder itself. Therefore. a proper selection of the binder and the fire retardant are recommended in arder to improve fire resistance of the reclaimed plastic concrete.

  • PDF

The effects of continuous and intermittent compressive pressure on alkaline phosphatase activity of Periodontal Ligament cells (지속적 및 간헐적 가압력이 치주인대 배양세포의 Alkaline Phosphatase 활성도에 미치는 영향)

  • Kwon, Suk-Yee;Bae, Seong-Min;Kyung, Hee-Moon;Sung, Jae-Hyun
    • The korean journal of orthodontics
    • /
    • v.27 no.4 s.63
    • /
    • pp.599-605
    • /
    • 1997
  • The propose of this study was to evaluate the effect of cellular activity on PDL cells dependent on intermittent and continuous compressive force by determining the alkaline phosphatase activity. An intermittent and continuous compressive forces were applied on PDL cells at the confluent stage. The alkaline phosphatase activity was measured on control and experimental groups every 24, 48, 72hours. The experimental group were consist of continuous and intermittent compressive group which were compressed by $300g/cm^2$ of diaphram pump. The intermittent compressive group was connected by timer which was worked on 10 minutes and off 10minutes. The results were as follows ; 1. The alkaline phosphatase activity of intermittent compressive group was lower than control group at 24 hours(P<0.05). 2. The alkaline phosphatase activity between each groups showed no significant differences at 48hours. 3. The alkaline phosphatase activity of continuous compresssive group was significantly higher than control group at 72 hours(P<0.01).

  • PDF

Autofrettage of Fuel Injection Pipe for Diesel Engine (디젤엔진 연료분사관의 자긴가공)

  • Koh, S.K.;Song, W.J.;Seo, K.S.;Choi, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.90-95
    • /
    • 2007
  • In order to investigate the optimum condition of the autofrettage process for the diesel engine injection pipe, different values of autofrettage pressure, pressure rising time, pressure holding time, and repetition of autofrettage process were applied. Autofrettage was preformed by applying the hydrostatic internal pressures of 603 MPa, 535 MPa, 500 MPa on the fuel injection pipe, corresponding to theoretically 50%, 30%, and 20% overstrain levels, respectively. The autofrettage residual stresses in the injection pipe were experimentally determined by using X-ray diffractometer. As the overstrain level increased, the magnitude of compressive residual stress at the bore increased. It was found that the rising time to reach the autofrettage pressure, holding time at the autofrettage pressure, and repeating application of the autofrettage pressure on the pipe had no significant influence on the residual stress distributions.

  • PDF

Elasto-plastic Analysis of a hydrogen pressure vessel of Composite materials (복합재료 수소 압력용기의 탄소성 해석)

  • Do, Ki-Won;Han, Hoon-Hee;Ha, Sung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.275-280
    • /
    • 2008
  • To improve the durability of a hydrogen pressure vessel which is applied high-pressure, it needs the autofrettage process which induces compressive residual stress in the Aluminum liner. This study presents the elasto-plastic analysis to predict the behavior of structure accurately, and the Tsai-Wu failure criterion is applied to predict failure of pressure vessel of Aluminum liner and composite materials. Generally, plastic analysis is more complex than elastic analysis and has much time to predict. To complement its weakness, the AxicomPro(EXCEL program), applied radial return algorithm and nonlinear classical laminate theory (CLT), is developed for predicting results with more simple and accurate than the existing finite element analysis programs.

  • PDF

An Experimental Study on the Residual Compressive Strength Characteristics of Concrete Exposed to High Temperature (고온에 노출된 콘크리트의 잔류압축강도특성에 관한 연구)

  • 오병환;한승환;조재열;이성규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.285-290
    • /
    • 1994
  • The influence of elevated temperatures on the mechanical properties of concrete is important for fire-resistance studies and also for understanding the behavior of containment vessel, such as nuclear reactor pressure vessels, during service and ultimate condition. The present study is to clarify the damage/deterioration of concrete structures that are subjected to high temperature exposure. To this end, comprehensive experiments are conducted. The major test variables are the peak temperatures, rate of temperature increase, and sustained duration at peak temperature. The results include weight loss residual compressive strength and stress-strain curve. From those results, residua compressive strength formula and stress-strain relationship are proposed.

  • PDF

The Development of Ultimate Compressive Strength for Ship Curved Plates (선체곡판의 압축최종강도 설계식의 개발)

  • 박영일;권용우;백점기;이제명;고재용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.101-109
    • /
    • 2004
  • Ship structures is thin-walled structures and she has lots of curved platings. In these days, lots different kinds of closed-formulas are development for ultimate strength of flat plate but for curved panels, there are not enough study or papers for this field. In this study, the ultimate strength characteristics for ship curved plates are studied. The ship plating is generally subjected to combined in-plane and lateral pressure loads. In-plane loads included biaxial compression/tension and edge shear. This is first report about the developing of ultimate compressive strength for ship curved plating. A closed-form formula for predicting the ultimate compressive strength of curved plates are empirically derived by curve fitting based on the computed results. The results and insights developed in the present study will be useful for damage tolerant design of curved plated structures.

  • PDF

Production and Statistical Qualtity Control of Low-Heat High Strength Reacy-Mixed Concrete (저발열 고강도 레미콘 제조 및 통계적 품질관리)

  • Park, Yon-Dong;Noh, Jae-Ho;Han, Chung-Ho;Kim, Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.376-381
    • /
    • 1996
  • In this study, the quality contral of high strength reacy-mixed concrete with design compressive strength of 420 kgf/$\textrm{cm}^2$ placed at a tail building for a long period is statistically investigated. The amount of cast-in-place high strength concrete is by about $15000\textrm{m}^3$. The required average compressive striength is 500 kgf/$\textrm{cm}^2$ according to KS F 4009 with assumed coefficient of variation of 11%. Since there are many concrete members in this construction, fly ash is used to reduce the heat of hydration of concrete. As the results of this study, the average actual 28-day compressive strength is 498 kgf/$\textrm{cm}^2$ and the coefficient of variation is 6.7%. The placing speed is comparable to normal strength concrete, however, the pump pressure is higher than that of normal strength concrete.

  • PDF

Evaluation of the Compressive Strength and Maturity According to Form Types in Low Temperature (저온양생하에서 거푸집 종류에 따른 콘크리트의 압축강도와 적산온도 특성 평가)

  • Choi, Si-Hyun;Mun, Young-Bum;Kim, Jae-Young;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.5-6
    • /
    • 2016
  • When concrete exposed to low temperatures, the free water in the concrete is freeze. If the pressure developed exceeds the tensile strength of the concrete, the cavity will dilate and rupture. It cause expansion and cracking, scaling and crumbling of the concrete. In this study, to prevent such damage, five different types of form were used. Concrete was poured into each form, cured for 7 days at temperature of -10℃. To measure the temperature history, two thermocouples were installed on each of the inside and outside. And to measure the compressive strength, collected core from each form. The maturity is formed by temperature history. The maturity and the compressive strength has a correlation.

  • PDF

Effect of State of Stress on Compressive Failure in Carbon-Fiber/Epoxy Composites; (탄소섬유/에폭시 복합재료의 압축파괴 거동에 부하 스트레스 상태가 미치는 영향)

  • ;S.R. Swanson
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.113-120
    • /
    • 1995
  • 여러가지 두꺼운 복합재료 구조물은 3차원 압축 부하 상태에 노출되는 경우가 발생한다. 이런 경우에 있어 서의 복합재료 압축 강도는 압축 평균 응력을 이용하면 예측이 가능할지도 모른다. 이번 연구 에서는 압축 평균 응력을 이용하여 탄소섬유 강화 복합재료들의 압축 강도를 예측하는 모델을 개발 하고자 한다. 이 모델은 압축강도에 영향을 주는 요소, 초기 misalignment를 고려하였고, 탄소섬유와 수지사이에 접합강도가 임계값을 초과할때 복합재료의 파괴가 일어난다고 가정한다. 또 여라가지 문헌들을 통하여 유압이 접합강도에 미치는 점들을 보여준다. 본 모델을 이용한 예측값들은 가해지는 유압에 따라 증가되며, 실험값들과 비교 분석될 것이다.

  • PDF