• Title/Summary/Keyword: Compressive Properties

Search Result 4,055, Processing Time 0.03 seconds

Effect of curing treatments on the material properties of hardened self-compacting concrete

  • Salhi, M.;Ghrici, M.;Li, A.;Bilir, T.
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.359-375
    • /
    • 2017
  • This paper presents a study of the properties and behavior of self-compacting concretes (SCC) in the hot climate. The effect of curing environment and the initial water curing period on the properties and behavior of SCC such as compressive strength, ultrasonic pulse velocity (UPV) and sorptivity of the SCC specimens were investigated. Three Water/Binder (W/B) ratios (0.32, 0.38 and 0.44) have been used to obtain three ranges of compressive strength. Five curing methods have been applied on the SCC by varying the duration and the conservation condition of SCC. The results obtained on the compressive strength show that the period of initial water curing of seven days followed by maturation in the hot climate is better in comparison with the four other curing methods. The coefficient of sorptivity is influenced by W/B ratio and the curing methods. It is also shown that the sorptivity coefficient of SCC specimens is very sensitive to the curing condition. The SCC specimens cured in water present a low coefficient of sorptivity regardless of the ratio W/B. Furthermore, the results show that there is a good correlation between ultrasonic pulse velocity and the compressive strength.

Prism Compressive Strength of Non-structural Concrete Brick Masonry Walls According to Workmanship (시공정밀도에 따른 비구조용 콘크리트벽돌 조적벽체의 프리즘 압축강도)

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.2
    • /
    • pp.127-136
    • /
    • 2020
  • Prism compressive strength is the most influential parameter to evaluate the seismic performance of non-structural concrete brick masonry walls, and is affected by the practice and workmanship of masonry workers. This study experimentally investigates the influence of workmanship on prism compressive strength throughout the compressive test with prism specimens constructed according to masonry workmanship. To do this, the workmanship is categorized into good, fair, and poor conditions which are statistically evaluated with thickness and indentation depth of bed-joints. Then, the effect of workmanship on the structural properties of masonry prisms is evaluated by investigating relations between properties such as their compressive strength, elastic modulus and numerical parameters such as thickness, filling of bed-joints. This study demonstrates that the indentation depth is more important parameter for structural properties of masonry prisms and masonry prisms with loss in bed-joint area less than of 7% can be in fair condition.

Compressive Properties of 3D Printed TPU Samples with Various Infill Conditions (채우기 조건에 따른 3D 프린팅 TPU 샘플의 압축 특성)

  • Jung, Imjoo;Lee, Sunhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.3
    • /
    • pp.481-493
    • /
    • 2022
  • This study investigated process conditions for 3D printing through manufacturing thermoplastic polyurethane (TPU) samples under different infill conditions. Samples were prepared using a fused deposition modeling 3D printer and TPU filament. 12 infill patterns were set (2D: grid, lines, zigzag; 3D: triangles, cubic, cubic subdivision, octet, quarter cubic; 3DF: concentric, cross 3D, cross, honeycomb), with 3 infill densities (20%, 50%, 80%). Morphology, actual time/weight and compressive properties were analyzed. In morphology: it was found that, as infill density increased, the increase rate of the number of units rose for 2D and fell for 3DF. Printing time varied with the number of nozzle movements. In the 3DF case, the number of nozzle movements increased rapidly with infill density. Sample weight increased similarly. However, where the increase rate of the number of units was low, sample weight was also low. In compressive properties: compressive stress increased with infill density and stress was high for the patterns with layers of the same shape.

Long-term development of compressive strength and elastic modulus of concrete

  • Yang, Shuzhen;Liu, Baodong;Yang, Mingzhe;Li, Yuzhong
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.263-271
    • /
    • 2018
  • Compressive strength and elastic modulus of concrete are constantly changing with age. In order to determine long-term development of compressive strength and elastic modulus of concrete, an investigation of C30 concrete cured in air conditions was carried out. Changes of compressive strength and elastic modulus up to 975 days were given. The results indicated that compressive strength and elastic modulus of concrete rapidly increased with age during the initial 150 days and then increased slowly. The gain in elastic modulus was slower than that of compressive strength. Then relationships of time-compressive strength, time-elastic modulus and compressive strength-elastic modulus were proposed by regression analysis and compared with other investigations. The trends of time-compressive strength and time-elastic modulus with age agreed best with ACI 209R-92. Finally, factors contributed to long-term development of compressive strength and elastic modulus of concrete were proposed and briefly analyzed.

The Mechanical Properties of Lightweight Concrete Using the Lightweight Aggregate Made with Recycled-plastic and high carbon fly ash (폐플라스틱과 고탄소 플라이애쉬 경량골재를 이용한 경량 콘크리트의 역학적 특성)

  • Jo, Byung-Wan;Park, Seung-Kook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.640-643
    • /
    • 2004
  • Synthetic lightweight aggregates are manufactured with recycled plastic and fly ash with 12 percent carbon. Nominal maximum-size aggregates of 9.5mm were produced with fly ash contents of 0 percent, 35 percent, and 80 percent by total mass of the aggregate. An expanded day lightweight aggregate and a normal-weight aggregate were used as comparison. Mechanical properties of the concrete determined included density, compressive strength, elastic modulus, and splitting tensile strength. Compressive and tensile strengths were lower for the synthetic aggregates; however, comparable fracture properties were obtained. Relatively low compressive modulus of elasticity was found for concretes with the synthetic lightweight aggregate, although high ductility was also obtained. As fly ash content of the synthetic lightweight aggregate increased, all properties of the concrete were improved.

  • PDF

Fabrication and Physical Properties of Honeycomb Type Cordierite Ceramic Filter Using Fly-Ash (플라이 애쉬를 이용한 코디어라이트 세라믹 하니컴 필터 제조 및 물성)

  • Kim, Sung-Jin;Bang, Hee-Gon;Park, Sang-Yeup
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.6 s.289
    • /
    • pp.351-357
    • /
    • 2006
  • The fabrication process of the honeycomb filter was investigated using synthesized cordierite with the addition of pore former and extrusion additives (either organic matter or graphite). Also, the effect of additives on the resultant properties of honeycomb filter such as porosity, thermal expansion coefficient and mechanical strength were investigated. With increasing the organic matter up to 10 wt%, porosity was increased but compressive strength was decreased. With increasing the graphite content, however, both porosity and compressive strength were increased. The specimen with an optimum processing condition (C-17A30G, sintering at $1150^{\circ}C$) was demonstrated 59% in porosity, 69 MPa in compressive strength, and $2.4{\times}10^{-6}/^{\circ}C\;(25{\sim}1000^{\circ}C$) in thermal expansion coefficient, which physical properties are appropriate for the honeycomb filter applications.

Effect of Flat and Elongated Particles in Coarse Aggregates on Properties of Concrete (굵은골재의 편장석 함유량이 콘크리트의 성능에 미치는 영향)

  • Won , Jong-Pil;Cho, Yong-Chin;Park , Kwang-Su;Shin , Su-Gyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.2
    • /
    • pp.49-57
    • /
    • 2004
  • Generally, the properties of aggregate greatly affect the physical and mechanical properties of concrete. Flat and elongated particles in coarse aggregates, for some construction uses, may interfere with consolidation and be difficult to place. In this study, an experiment to evaluate properties of flat and elongated particles as coarse aggregate in concrete was conducted. The experiments include slump test, air content test and compressive strength test. The test result of slump and change of slump was rapidly decreased by percentage of flat and elongated particles. But it had not a trend by increasing percentage of flat and elongated particles. Compressive strength of hardened concrete does not make any differences in comparison.

Effect of Strength Properties of In-Situ Concrete Pile in Embankment Slopes on Embankment Materials and Boring Methods (성토사면에 타설된 현장 콘크리트 말뚝의 강도특성에 미치는 성토재료 및 타설 방법에 대한 영향)

  • Hwang, Moo-Suk;Jeoung, Jae-Hoon;Park, Seung-Ki;Lee, Chang-Soo;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.5
    • /
    • pp.73-81
    • /
    • 2008
  • This study evaluated the applicability of in-situ concrete pile as a stabilization materials of embankment slopes including agricultural reservoir and rural road etc. The experimental embankment slopes was constructed to investigate the strength properties of in-situ concrete pile with embankment materials and boring methods. The test variable were applied the boring method(driving and augering) and water-cement ratio. In order to analyze the physical and mechanical properties of embankment materials, permeability and water contents test were was performed. Also, the freshly and harden of in-situ concrete properties were measured by the slump and compressive strength tests. The results showed the water content and permeability of embankment materials and boring methods affected on compressive strength of in-situ concrete pile.

A Study of the Basic Properties of Lightweight Aggregate Concrete for Offshore Structures Application (해양구조물 적용을 위한 경량골재콘크리트의 기초물성에 관한 연구)

  • Kim, Myung-Sik;Jang, Hee-Suk;Kim, Chung-Ho;Baek, Dong-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.73-79
    • /
    • 2011
  • The various properties of concrete have been required, as civil engineering structures are getting larger and complicated. Therefore, the high performance of concrete, such as high strength, high fluidity, and low hydration heat, has been investigated largely. In this study, the properties of lightweight concrete-reducing self-weight of structure member have been studied in order to check the applicability of lightweight aggregate concrete to structural material. The experiments on compressive strength, splitting tensile strength, unit weight, and modulus of elasticity have been conducted with varying PLC, LWCI, LWCII, LWCII-SF5, LWCII-SF15 to check the basic properties. The compressive strength of 21MPa was obtained easily by using lightweight aggregate concrete and the addition of silica fume to increase the compressive strength slightly. To use lightweight aggregate concrete for civil engineering structures, systematic and rigorous studies are necessary.

Mechanical properties and durability of self consolidating cementitious materials incorporating nano silica and silica fume

  • Mahdikhani, Mahdi;Ramezanianpour, Ali Akbar
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.175-191
    • /
    • 2014
  • In recent years, the emergence of nanotechnology and nanomaterial has created hopes to improve various properties of concrete. Nano silica as one of these materials has been introduced as a cement replacement material for concrete mixture in construction applications. It can modify the properties of concrete, due to high pozzolanic reactions and also making a denser microstructure. On the other hand, it is well recognized that the use of mineral admixtures such as silica fume affects the mechanical properties and durability of cementitious materials. In addition, the superior performance of self-consolidating concrete (SCC) and self-consolidating mortars (SCM) over conventional concrete is generally related to their ingredients. This study investigates the effect of nano silica and silica fume on the compressive strength and chloride permeability of self-consolidating mortars. Tests include compressive strength, rapid chloride permeability test, water permeability, capillary water absorption, and surface electrical resistance, which carried out on twenty mortar mixtures containing zero to 6 percent of nano silica and silica fume. Results show that SCMs incorporating nano silica had higher compressive strength at various ages. In addition, results show that nano silica has enhanced the durability SCMs and reduced the chloride permeability.