• Title/Summary/Keyword: Compressive Modulus

Search Result 878, Processing Time 0.021 seconds

Using ANN to predict post-heating mechanical properties of cementitious composites reinforced with multi-scale additives

  • Almashaqbeh, Hashem K.;Irshidat, Mohammad R.;Najjar, Yacoub
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.337-350
    • /
    • 2022
  • This paper focuses on predicting the post-heating mechanical properties of cementitious composites reinforced with multi-scale additives using the Artificial Neural Network (ANN) approach. A total of four different feed-forward ANN models are developed using 261 data sets collected from 18 published sources. The models are optimized using 12 input parameters selected based on a comprehensive literature review to predict the residual compressive strength, the residual flexural strengths, elastic modulus, and fracture energy of heat-damaged cementitious specimens. Furthermore, the ANN is employed to predict the impact of several variables including; the content of polypropylene (PP) microfibers and carbon nanotubes (CNTs) used in the concrete, mortar, or paste mix design, length of PP fibers, the average diameter of CNTs, and the average length of CNTs. The influence of the studied parameters is investigated at different heating levels ranged from 25℃ to 800℃. The results demonstrate that the developed ANN models have a strong potential for predicting the mechanical properties of the heated cementitious composites based on the mixing ingredients in addition to the heating conditions.

Utilising artificial neural networks for prediction of properties of geopolymer concrete

  • Omar A. Shamayleh;Harry Far
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.327-335
    • /
    • 2023
  • The most popular building material, concrete, is intrinsically linked to the advancement of humanity. Due to the ever-increasing complexity of cementitious systems, concrete formulation for desired qualities remains a difficult undertaking despite conceptual and methodological advancement in the field of concrete science. Recognising the significant pollution caused by the traditional cement industry, construction of civil engineering structures has been carried out successfully using Geopolymer Concrete (GPC), also known as High Performance Concrete (HPC). These are concretes formed by the reaction of inorganic materials with a high content of Silicon and Aluminium (Pozzolans) with alkalis to achieve cementitious properties. These supplementary cementitious materials include Ground Granulated Blast Furnace Slag (GGBFS), a waste material generated in the steel manufacturing industry; Fly Ash, which is a fine waste product produced by coal-fired power stations and Silica Fume, a by-product of producing silicon metal or ferrosilicon alloys. This result demonstrated that GPC/HPC can be utilised as a substitute for traditional Portland cement-based concrete, resulting in improvements in concrete properties in addition to environmental and economic benefits. This study explores utilising experimental data to train artificial neural networks, which are then used to determine the effect of supplementary cementitious material replacement, namely fly ash, Ground Granulated Blast Furnace Slag (GGBFS) and silica fume, on the compressive strength, tensile strength, and modulus of elasticity of concrete and to predict these values accordingly.

The Effect of Vertical Strut in Circular Arch Lattice Structure by Selective Laser Sintering for Lightweight Structure

  • Sangwon Lee;Jae-An Jeon;Sang-Eui Lee
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.173-179
    • /
    • 2023
  • The sandwich structure, consisting of a core and a face sheet, is used for lightweight structural application. Generally, cellular structures like honeycomb, foam, and lattice structures are utilized for the core. Among these, lattice structures have several advantages over other types of structures. In other studies, curved lattice structures were reported to have higher mechanical properties than straight structures by converting shear stresses acting on the structure into compressive stresses. Moreover, the addition of vertical struts can have a positive effect on the mechanical properties of the lattice structure. For the purpose, two lattice structures with Circle Arch (CC) and Circular Arch with a vertical column (CC_C) were studied, which were fabricated by using selective laser sintering was conducted. The result showed that CC_C has dramatic performance improvements in specific strength, modulus, and strain energy density compared to CC, confirming that vertical struts played a significant role in the lattice core. Finite element analysis was employed to determine the cause of the stress behavior of CC and CC_C. This study is expected to help design structurally superior lattice cores and sandwich structures.

Polynomial model controlling the physical properties of a gypsum-sand mixture (GSM)

  • Seunghwan Seo;Moonkyung Chung
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.425-436
    • /
    • 2023
  • An effective tool for researching actual problems in geotechnical and mining engineering is to conduct physical modeling tests using similar materials. A reliable geometric scaled model test requires selecting similar materials and conducting tests to determine physical properties such as the mixing ratio of the mixed materials. In this paper, a method is proposed to determine similar materials that can reproduce target properties using a polynomial model based on experimental results on modeling materials using a gypsum-sand mixture (GSM) to simulate rocks. To that end, a database is prepared using the unconfined compressive strength, elastic modulus, and density of 459 GSM samples as output parameters and the weight ratio of the mixing materials as input parameters. Further, a model that can predict the physical properties of the GSM using this database and a polynomial approach is proposed. The performance of the developed method is evaluated by comparing the predicted and observed values; the results demonstrate that the proposed polynomial model can predict the physical properties of the GSM with high accuracy. Sensitivity analysis results indicated that the gypsum-water ratio significantly affects the prediction of the physical properties of the GSM. The proposed polynomial model is used as a powerful tool to simplify the process of determining similar materials for rocks and conduct highly reliable experiments in a physical modeling test.

Fire resistance of hybrid fiber reinforced SCC: Effect of use of polyvinyl-alcohol or polypropylene with single and binary steel fiber

  • Kazim Turk;Ceren Kina;Esma Balalan
    • Advances in concrete construction
    • /
    • v.16 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • This study presents the experimental results performed to evaluate the effects of Polyvinyl-alcohol (PVA) and Polypropylene (PP) fibers on the fresh and residual mechanical properties of the hybrid fiber reinforced SCC before and after the exposure of 250℃, 500℃ and 750℃ temperatures. The compressive and splitting tensile strength, modulus of rupture (MOR), ultrasonic pulse velocity (UPV) as well as toughness and weight loss were investigated at different temperatures. PVA and PP fibers were added into SCC mixtures having only macro steel fiber and also having binary hybridization of both macro and micro steel fiber. The results showed that the use of micro steel fiber replaced by macro steel fiber improved the fresh and hardened properties compared to the use of only macro steel fiber. Moreover, it was emphasized that PVA or PP enhanced the residual flexural performance of SCC, generally, while it negatively influenced the workability, weight loss, UPV and the residual strengths with regards to the use of single steel fiber and binary steel fiber hybridization. Compared to the effect of synthetic fibers, PP had slightly more positive effect in the view of workability while PVA enhanced the residual mechanical properties more.

Acoustic emission characteristics under the influence of different stages of damage in granite specimens

  • Jong-Won Lee;Tae-Min Oh;Hyunwoo Kim;Min-Jun Kim;Ki-Il Song
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.149-166
    • /
    • 2024
  • The acoustic emission (AE) technique is utilized to estimate the rock failure status in underground spaces. Understanding the AE characteristics under loading conditions is essential to ensure the reliability of AE monitoring. The AE characteristics depend on the material properties (p-wave velocity, density, UCS, and Young's modulus) and damage stages (stress ratio) of the target rock mass. In this study, two groups of granite specimens (based on the p-wave velocity regime) were prepared to explore the effect of material properties on AE characteristics. Uniaxial compressive loading tests with an AE measurement system were performed to investigate the effect of the rock properties using AE indices (count index, energy index, and amplitude index). The test results were analyzed according to three damage stages classified by the stress ratio of the specimens. Count index was determined to be the most suitable AE index for evaluating rock mass stability.

Investigating the combination of natural and crushed gravel on the fresh and hardened properties of self-compacting concrete

  • Moosa Mazloom;Mohammad Ebrahim Charmsazi;Mohammad Hosein Parhizkari
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • Self-compacting concrete is widely used around the globe today due to its special and unique properties. This study examines the effect of natural and crushed gravel combinations in different percentages in short-and long-term properties of concrete. The best utilized sand had a fineness modulus of 2.7. In the mentioned mix designs, silica fume was used with 0 and 7% of the weight of the cement. In order to check the properties of fresh and hardened concrete, 9 and 5 test types were performed, respectively. The carried out tests were slump flow, V-funnel, J-ring, L-box, U-box and column segregation for fresh concrete, and compressive, tensile and flexural strengths for hardened concrete. A mix with only 100% natural gravel was considered as the control mix. According to the results, the control mix design and the one containing 100% crushed gravel with silica fume were the best in fresh and hardened concrete tests, respectively. Finally, using the optimization method, a mix design with 25% natural gravel, 75% crushed gravel and silica fume was introduced as the best mix in terms of the results of both fresh and hardened concrete tests.

Properties of Strength and Stress-Strain of Recycled-Plastic Polymer Concrete (폐플라스틱 재활용 폴리머콘크리트의 강도와 응력-변형률 특성)

  • Jo Byung-Wan;Koo Jakap;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.329-334
    • /
    • 2005
  • The use of Polymer Concrete (PC) is growing very rapidly in many structural and construction applications such as box culverts, hazardous waste containers, trench lines, floor drains and the repair and overlay of damaged cement concrete surfaces in pavements, bridges, etc. However, PC has a defect economically because resin which be used for binder is expensive. Therefore the latest research is being progressed to replace existing resin with new resin which can reduce the high cost. Here, Polymer concrete using the recycled PET(polyethylene terephthalate) has some merits such as decrease of environmental destruction, decrease of environmental pollution and development of new construction materials. The variables of this study are amount of resin, curing condition and maximum size of coarse aggregate to find out mechanic properties of this. Stress-strain curve was obtained using MTS equipment by strain control. The results indicated that modulus of elasticity was increased gradually in an ascending branch of curve, as an increase of resin content. Compressive strength was the highest for resin content of $13\%$. And Compressive strength was increased as maximum size of coarse aggregate increases. The strain at maximum stress increases with an increase of resin content and size of coarse aggregate. For the descending branch of stress-strain curve the brittle fracture was decreased when it was cured at the room temperature compared to high temperature.

Mechanical Characteristics of Recycled PET Polymer Concrete with Demolished Concrete Aggregates (PET와 재생골재를 이용한 폴리머콘크리트의 역학적 특성)

  • Jo Byung-Wan;Lee Du-Wha;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.335-342
    • /
    • 2005
  • In this paper, fundamental properties of Polymer Concrete(PC), made from unsaturated polyester resin based on recycled PET and recycled aggregate were investigated. Mechanical properties include strength, modulus of elasticity, and chemical resistance. Resins based on recycled PET and recycled aggregate offer the possibility of low source cost for forming useful products, and would also help alleviate an environmental problem and save energy. The results of test for resin contents and recycled aggregate ratio we, first, the strength of Polymer Concrete made with resin based on recycled PET and recycled aggregate increases with resin contents relatively, however beyond a certain resin contents the strength does not change appreciably, Second, the relationship between the compressive strength and recycled aggregate ratio at resin $9\%$ has a close correlation linearly whereas there is no correlation between the compressive strength and the flexural strength of RPC with recycled aggregate ratio. Third, the effect of acid resistance at resin $9\%$ was found to be nearly unaffected by HCI, whereas the PC with $100\%$ recycled aggregate showed poor acid resistance. Unlike acid, alkali nearly does not seem to attack the RPC as is evident from the weight change and compressive strength. And last, In case of stress-strain curve of polymer concrete with $100\%$ of natural aggregate and $100\%$ recycled aggregate it is observed the exceptional behavior resulting in different failure mechanisms of the material under compression.

Flowability and Strength Properties of Mortar and Self-Compacting Concrete Mixed with Waste Concrete Powder (폐콘크리트 분말을 혼합한 모르타르 및 자기충전 콘크리트의 유동 및 강도특성)

  • Choi, Yun-Wang;Jung, Moon-Young;Moon, Dae-Joong;Kim, Sung-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.517-526
    • /
    • 2006
  • In this study, in order to utilize waste concrete powder(WCP) which is occurred in manufacturing high quality recycled aggregate as an admixture for self-compacting concrete(SCC), the properties of cement paste, mortar, and concrete that were mixed two types of WCP, 928 and 1,360 $cm^2/g$ of surface area, were analyzed. As a result of experiment, we have found that WCP was a porous material with angle. When WCP was utilized as an admixture for SCC, its flowability and viscosity increased in proportion to the increase of a replacement ratio, and that a replacement ratio of WCP was proper within 15%. The compressive strength at 28 days mixed respectively with WCP2, 15 and 30%, showed about 36 and 28 MPa, and it showed a similar trend with a function suggested in CEB-FIP for the relationship of compressive strength and elastic modulus. According to the results, it is judged that WCP2 can be utilized as an mineral admixture of normal strength SCC.