• Title/Summary/Keyword: Compressive Force

Search Result 614, Processing Time 0.024 seconds

Contribution Assessment of Roadheader Performance Indexes by Analysis of Variance (분산분석을 이용한 로드헤더 절삭시험 입출력 인자 간의 기여도 조사)

  • Mun-Gyu, Kim;Chang-Heon, Song;Joo-Young, Oh;Jung-Woo, Cho
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.386-396
    • /
    • 2022
  • To analyze the influence of variables of roadheaders, the linear cutting testing data of pick cutter were collected from the former literatures. The input factors were set up as uniaxial compressive strength, cutting depth, cutting spacing, attack angle, skew angle, and output factors were determined as specific energy, average cutting force, maximum cutting force, average vertical force, and maximum vertical force. After composing a table of the design of experiment (DOE). The contribution level of each factor was calculated by analysis of variance (ANOVA). As a result, the factors having greatest influence on cutting force and specific energy were uniaxial compressive strength and cutting spacing.

Effects of Specimen Depth on Flexural Compressive Strength of Concrete (부재의 깊이가 콘크리트의 휨압축강도에 미치는 영향)

  • 이성태;김진근;김장호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.121-130
    • /
    • 2000
  • Currently, in evaluating a flexural strength of a concrete member, the effect of specimen depth has not been systematically studied, even though its effect on ultimate strength of a section is very important. For all types of loading conditions, the trend is that the strength of a member tends to decrease when the member depth increases. In this study, the influence of specimen depth on flexural compressive strength of concrete member was examined experimentally. A series of C-shaped specimens subjected to axial compressive force and bending moment were tested using three geometrically similar specimens with different length-to depth ratios (h/c = 1, 2 and 4) which have compressive strength of 55 MPa. The results indicate that the flexural compressive strength decreased as the specimen depth increased. A model equation was derived based on regression analyses of the experimental data. Also, the results show that ultimate strain decreases as the specimen depth increases. Finally, a general model equation for the depth effect is proposed.

Compressive Stress Distribution of High Tension Bolted Joints (고장력 볼트 이음부의 내부 압축응력 분포)

  • Kim, Sung Hoon;Lee, Seung Yong;Choi, Jun Hyeok;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.171-179
    • /
    • 1997
  • The high-tension bolted joints are clamped by the axial force which approaches the yielding strength. The introduced axial force is transmitted to the connection members pass through washer. The transferred load in connections is balanced to the compressive stress of plates, axial force in bolts and the external loads. In this mechanism, the compressive stress and slip load we dominated by the effective stiffness of bolted joints and plates. In general the effective stiffness is specified to product to the effective area and elasticity modulus in connections. In this reason, the conic projection formular which is assumed that the axial force in bolts is distributed to the cone shape and that region is related to the elastic deformation mechanism in connections, was proposed. But it conclude what kind of formula is justified. Therefore in this paper, the fatigue tests are performed to the high tension bolted joints and inspected to the phase on the friction face. And using the FEM and numerical method, it is analyzed and approximated to the compressive stress distribution and its region. Moreover, it is estimated to the effective area and to the relation the friction area to the effective compressive distribution region.

  • PDF

THE EFFECTS OF POSTERIOR RETRACTION ON THE DISPLACEMENT OF THE MAXILLA

  • Yoo, Bo-Yeong;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.26 no.6
    • /
    • pp.691-703
    • /
    • 1996
  • Three-dimensional finite element model was made from adult skull to find desirable direction of retraction force to treat skeletal class II malocclusion. The retraction force of 400g was applied to the first molar. The direction of the force application was $23^{\circ}$ downward, parallel, $23^{\circ}$ upward and $45^{\circ}$ upward to the occlusal plane. The stress distribution and the displacement within the maxilla were analyzed by three-dimensional finite element method. The findings obtained were as follows: 1. Maxillary first molar was displaced posteriorly and inferiorly in $23^{\circ}$ downward, parallel, $23^{\circ}$ upward retraction but it was displaced posteriorly and superiorly in $45^{\circ}$ upward retraction. 2. ANS, A point and prosthion were moved posteriorly and inferiorly and pterygomaxillary fissure was moved posteriorly and superiorly. Clockwise rotation of maxilla occurred when retraction force was applied. 3. The degree of clockwise rotation of maxilla was greatest when the force was applied $23^{\circ}$ upward to the occlusal plane and was least when the force was applied $23^{\circ}$ downward to the occlusal plane. 4. Large tensile stress appeared in maxillary first molar and alveolar bone and the infraorbital region of maxilla when the force was applied $23^{\circ}$ downward to the occlusal plane. Tensile stress was smaller as the direction of force move upward. 5. Large compressive stress was appeared in maxillary first molar and infraorbital region in $45^{\circ}$ upward case and large compressive stress occurred in the posterior part of maxilla as the retraction force was upward.

  • PDF

Ergonomic evaluation and improving measures of tasksperformed in a general hospital (종합 병원 종사자 업무의 인간공학적 평가 및 개선 방안)

  • Kee, Dohyung;Song, Young Woong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.2
    • /
    • pp.161-171
    • /
    • 2006
  • The objectives of this study were to ergonomically evaluate varying tasks performed in a general hospital and to propose their improving measures based on the evaluation results. The tasks found in the hospital were largely classified into two groups of manual materials handling and awkward posture related tasks. Ergonomic tools of NLE, 3-D SSPP and RULA were used for evaluating workload of the tasks. The major findings are: 1) L5/S1 compressive force of patient transferring by one person exceeded the maximum permissible limit(6,400N) by NIOSH. The L5/S1 compressive forces for most of the patient transferring tasks by 2-4 persons were larger than the action limit (3,400N), and the tasks by five persons were analyzed to be safe in the view of L5/S1 compressive force; 2) patient repositioning tasks by 2-3 persons were hazardous on the basis of L5/S1 compressive force, while most of the tasks by 4-5 persons were safe; 3) many tasks performed in wards were found to be stressful, most of which resulted from improper heights of their working tables or working points. Of varying tasks in general hospitals, patient transferring was the most stressful. Based on the results of this study and high prevalence of musculoskeletal disorders from other studies, it is recommended that the ergonomics program be introduced and enforced for doing improving activities systematically

Discrete element numerical simulation of dynamic strength characteristics of expanded polystyrene particles in lightweight soil

  • Wei Zhou;Tian-shun Hou;Yan Yang;Yu-xin Niu;Ya-sheng Luo;Cheng Yang
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.577-595
    • /
    • 2023
  • A dynamic triaxial discrete element numerical model of lightweight soil was established using the discrete element method to study the microscopic mechanism of expanded polystyrene (EPS) particles in the soil under cyclic loading. The microscopic parameters of the discrete element model of the lightweight soil were calibrated depending on the dynamic triaxial test hysteresis curves. Based on the calibration results, the effects of the EPS particles volume ratio and amplitude on the contact force, displacement field, and velocity field of the lightweight soil under different accumulated strains were studied. The results showed that the hysteresis curves of lightweight soil exhibit nonlinearity, hysteresis, and strain accumulation. The strain accumulated in remolded soil is mainly tensile strain, and that in lightweight soil is mainly compressive strain. As the volume ratio of EPS particles increased, the contact force first increased and then decreased, and the displacement and velocity of the particles increased accordingly. With an increase in amplitude, the dynamic stress of the particle system increased, and the accumulation rate of the dynamic strain of the samples also increased. At 5% compressive strain, the contact force of the particles changed significantly and the number of particles deflected in the direction of velocity also increased considerably. These results indicated that the cemented structure of the lightweight soil began to fail at a compressive strain of 5%. Thus, a compressive strain of 5% is more reasonable than the dynamic strength failure standard of lightweight soil.

An Experimental Study to Evaluate the Stiffness of Fastening Systems - Translational Stiffness along the Vertical Axis of Rail, Rotational Stiffness along the Strong Axis of Rail - (체결장치의 강성 평가를 위한 실험적 연구 - 레일 연직방향 병진강성, 레일 강축에 대한 회전강성 -)

  • Kim, Jung-Hun;Han, Sang-Yun;Lim, Nam-Hyoung;Kang, Young-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.71-78
    • /
    • 2008
  • In the case of the railway bridges, uplift forces were occurred at the edge of the segments when vehicular loads were applied. These forces caused the compressive and tensile forces in the fastening system. In the past, a structural analysis has been performed to investigate the safety of fastening system which was modeled with one directional spring elements based on the compressive test of fastening system. In this case, the stiffness of the spring element was obtained from experimental study which was conducted by compressive load. Therefore, to perform rational and exact structural analysis, the translational stiffness of the fastening system obtained from the experimental study applied the tensile load and the rotational stiffness should be considered because it was occurred the tensile force as well as the compressive force in fastening system. In this study, an elastic and inelastic experimental study was performed for six specimens. The translational stiffness along the vertical axis of rail and the rotational stiffness along the strong axis of rail were investigated, also structural behavior of the fastening system was analyzed.

Effects of Specimen Depth on Flexural Compressive Strength of Concrete (콘크리트의 휨압축강도에 미치는 부재깊이의 영향)

  • Yi, Seong-Tae;Kim, Jin-Keun;Lee, Yun;Kim, Jang-Ho;Yang, Eun-Ik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.115-120
    • /
    • 2000
  • Currently, in evaluating a flexural strength of a concrete member, the effect of specimen depth has not been systematically studied, even though its effect on ultimate strength of a section is very important. For all types of loading conditions, the trend is that the strength of a member tends to decrease when the member depth increases. In this study, the influence of specimen depth on flexural compressive strength of concrete member was examined experimentally. A series of C-shaped specimens subjected to axial compressive force and bending moment were tested using three geometrically similar specimens with different length-to-depth ratios(h/c=1, 2 and 4) which have compressive strength of 55MPa. The results indicate that the flexural compressive strength decreased as the specimen depth increased. A model equation was derived based on regression analyses of the experimental data. Also the results show that ultimate strain decreases as the specimen depth increases. Finally, a general model equation for the depth effect is proposed.

  • PDF

The Stress Distribution and Improvement of fatigue Strength for Notched Materials by Shot Peening (Shot peening 가공에 의한 노치재의 응력분포와 피로강도의 개선)

  • Lee, Seung-Ho;Kim, Hei-Song
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.120-126
    • /
    • 1998
  • Second step shot peening was applied on both smooth specimen and U-notch specimen in order to investigate the stress distribution and the improvement in fatigue strength. Various experiments and measurements such as rotary bending fatigue test and the measurement of compressive residual stress were performed. The results showed that the fatigue strength of second step shot peened specimens increased by 34 percent compared to that of unpeened ones. Compressive residual stress also considerably increased, which resulted in the increase of fatigue strength. finite element analysis showed that shot peening is effective in decreasing the bending stress by external force. The effectiveness of shot peening in reducing the compressive residual stress was anticipated by the superposition of the concentrated stress and the compressive residual stress.

  • PDF

Effects of compressive stress on the expression of M-CSF, IL-$1{\beta}$, RANKL and OPG mRNA in periodontal ligament cells (압박력이 치주인대 세포의 M-CSF, IL-$1{\beta}$, RANKL 및 OPG mRNA 발현에 미치는 영향)

  • Kim, Ji-Woong;Lee, Ki-Soo;Nahm, Jong-Hyun;Kang, Yoon-Goo
    • The korean journal of orthodontics
    • /
    • v.39 no.4
    • /
    • pp.248-256
    • /
    • 2009
  • Objective: The aim of this study was to determine if human PDL cells can produce osteoclastogenic mRNA and examine how compressive stress affects the expression of osteoclastogenic mRNA in human PDL cells. Methods: Human PDL cells were obtained from biscupids extracted for orthodontic treatment. The compressive force was adjusted by increasing the number of cover glasses. PDL cells were subjected to a compressive force of 0.5, 1.0, 2.0, 3.0 or $4.0\;g/cm^2$ for 0.5, 1.5, 6, 24 or 48 hours. Reverse transcription polymerase chain reaction (RT-PCR) analysis was performed to examine levels of M-CSF, IL-$1{\beta}$, RANKL, OPG mRNA expression. Results: Human PDL cells could produce M-CSF mRNA. Human PDL cells under compressive stress showed increased M-CSF, IL-$1{\beta}$ and RANKL mRNAs expression in a force (up to $2\;g/cm^2$) and time-dependent manner. However, OPG mRNA expression was constant regardless of the level and duration of stress. Conclusions: Continuous compressive stress induced the mRNA expression of osteoclastogenic cytokines including M-CSF, RANKL, IL-$1{\beta}$ in PDL cells. Together with an unchanged OPG mRNA level, these results suggest that compressive stress-induced osteoclastogenesis in vivo is partly controlled by M-CSF, RANKL and IL-$1{\beta}$ expression in PDL cells.