• 제목/요약/키워드: Compressive Fatigue Life

검색결과 130건 처리시간 0.02초

누적손상을 고려한 강섬유보강 콘크리트의 피로파괴 특성 (Fatigue Failure Characteristics of Steel Fiber Reinforced Concrete Considering Cumulative Damage)

  • 김동호;홍창우;이주형;이봉학
    • 한국농공학회지
    • /
    • 제44권2호
    • /
    • pp.117-126
    • /
    • 2002
  • Concrete containing discontinuous discrete steel fiber in a normal concrete is called steel fiber reinforced concrete(SFRC). Tensile as well as flexural strengths of concrete could be substantially increased by introducing closely spaced fibers which delay the onset of tension cracks and increase the tension strength of cracks. However, many properties of SFRC have not been investigated, especially properties on repeated loadings. Thus, the purposes of this dissertation is to study the flexural fatigue characteristics of SFRC considering cumulative damage. A series of experimental tests such as compressive strength, splitting tensile strength, flexural strength, flexural fatigue, and two steps stress level fatigue were conducted to clarify the basic properties and fatigue-related properties of SFRC. The main experimental variables were steel fiber fraction (0, 0.4, 0.7, 1, 1.5%), aspect ratio (60, 83). The principal results obtained through this study are as follows: The results of flexural fatigue tests showed that the flexural fatigue life of SFRC is approxmately 65% of ultimate strength, while that of plain is less than 58%. Especially, the behavior of flexural fatigue life shows excellent performance at 1.0% of steel-fiber volume fraction. The cumulative damage test of high-low two stress levels is within the value of 0.6 ∼ 1.1, while that of low-high stress steps is within the value of 2.4 ∼ 4.0.

고장력강 SNCM8재의 표면처리에 따른 피로강도 변화 (A Study on Fatigue Strength Influence of Surface Treatment on High Strength Steel SNCM8)

  • 강신현;차정환;배성인
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.697-703
    • /
    • 1996
  • Fatigue strength of high strengthsteels are variable with many different surface treatment. It is well known that residual compressive stress retard fatigue crack growth rate(or arrest crack). High strngth steels are manufactured by following process. Heat treatment, shot peening and chromium plating process. High strength steel(HRC40 or above) which are subjected to fatigue load and dynamic load, chromium plated parts shall be peened in accordance with requirements and baked after plating. The purpose of this paper is to compare and discuss the influence of surface treatment and hydrogen embrittlement on fatigue strength of high strength steel. Therefore, fatigue test was performed to investigate influence of surface treatment. The results shows that shot peening is very effect method in creasing fatigue life and after plating, baking process is essential to prevent hydogen failure. In this paper, the experimental investigation is made to clarify the influence of shot peening conditions and baking process on fatigue strength of high strength steel.

  • PDF

LOW CYCLE THERMAL FATIGUE OF THE ENGINE EXHAUST MANIFOLD

  • Choi, B.L.;Chang, H.;Park, K.H.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.297-302
    • /
    • 2004
  • This paper presents the low cycle thermal fatigue of the engine exhaust manifold subject to thermo-mechanical cyclic loading. As a failure of the exhaust manifold is mainly caused by geometric constraints of the less expanded inlet flange and cylinder head, the analysis is based on the exhaust system model with three-dimensional temperature distribution and temperature dependent material properties. The result show that large compressive plastic deformations are generated at an elevated temperature of the exhaust manifold and tensile stresses are remained in several critical zones at a cold condition. From the repetition of these thermal shock cycles, maximum plastic strain range (0.454%) could be estimated by the stabilized stress-strain hysteresis loops. It is used to predict the low cycle thermal fatigue life of the exhaust manifold for the thermal shock test.

구조용강에서 용접 Toe Notch의 피로파괴거동에 관한 연구 (A Study on the Fatigue Fracture Behavior of Weld Toe Notch in Structure Steel)

  • 차용훈;김하식;노승희
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1996년도 특별강연 및 춘계학술발표 개요집
    • /
    • pp.115-118
    • /
    • 1996
  • 1. The crack is inifiated at a toe notch and reptured for the skip and continuous welding. 2. Fatigue life of continuous welding is greater than that of skip welding and fatigue life of 2pad continuous welding appears 1.7 times more than that of pad continuous welding. 3. For the skip and continuous welding, fatigue than that of welding materials appears shorter than that of welding materials because of the effect of plastic strain and compressive residual stresses at the crack tip, which are generated by the over loading. 4. Inter-relationship between da/dN-ΔK and delayed phenomenon increases linearly at the state growth area of heat effect section for the skip and continuous welding.

  • PDF

엔진 배기매니폴드의 열피로 수명 예측 (Thermal Fatigue Life Prediction of Engine Exhaust Manifold)

  • 최복록
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.139-145
    • /
    • 2007
  • This paper presents the low cycle thermal fatigue of the engine exhaust manifold subject to thermomechanical cyclic loadings. The analysis includes the FE model of the exhaust system, temperature dependent material properties, and thermal loadings. The result shows that at an elevated temperature, large compressive plastic deformations are generated, and at a cold condition, tensile stresses are remained in several critical zones of the exhaust manifold. From the repetitions of thermal shock cycles, plastic strain ranges could be estimated by the stabilized stress-strain hysteresis loops. The method was applied to assess the low cycle thermal fatigue for the engine exhaust manifold. It shows a good agreement between numerical and experimental results.

마하피닝 처리에 의한 기계구조용 합금강의 피로균열전파 지연효과 (Effect of mach peening treatment on fatigue crack growth retardation in structural steel alloy)

  • 김민건;임복규;박홍기;황중각
    • 산업기술연구
    • /
    • 제26권A호
    • /
    • pp.69-73
    • /
    • 2006
  • Mach peening treatment is one of the various kinds of techniques to improve the fatigue properties. The mach peening process gives high-level work hardening and compressive residual stress near the surface layer, improving the fatigue strength. In addition, this treatment reduces slip bands that initiate the fatigue cracks near the surface. During impingement, a plastic indentation surrounded by a plastic zone is formed. Mach peening treatment characteristic is less energy consumption and is an environmental friendly processing methods that is not accompanied by pollution. It is machining process that can prevent fatigue fracture beforehand in structure using already as well as process of production. The test results showed that fatigue crack propagation delay appeared by drilling type 43%, mach peening type 110%.

  • PDF

레이저빔 조사에 의한 압력용기용 강의 피로강도 향상방법 개발 (Fatigue Strength Improvement of Pressure Vessel Steel by Lasler Beam Radiation)

  • 권재도;진영준;김상태;최선호
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.519-528
    • /
    • 1994
  • Degradation problem due to long term service in machine or structure is now one of important problems in whole industrial field. In this study, pressure vessel steel, Cr-Mo steel, which was used more than 60,000 hours, was surface-modified by laser beam radiation for the improvement of fatigue strength. To find out optimum radiation condition, hardness, residual stress measurement and fatigue tests were carried out with the specimen of different radiation conditions. Experimental results show that micro-hardness values on the surface of the radiated specimens were approximately 2.2 times higher than those of un-radiated ones. In the depth direction of the specimen, hardness on the surface showed maximum value and was decreased at the inside the specimen. Different hardness values are due to the energy density Q which was absorbed by the specimen. Fatigue tests show that fatigue life was improved by the compressive residual stress after laser beam radiation. However, some specimens with differednt conditions show the shorter fatigue life. It means that laser beam radiation with optimum parameter can improve thae fatigue strength.

혼화재를 다량 치환한 경량 및 보통중량 콘크리트의 압축피로 특성 평가 (Evaluation on Fatigue Performance in Compression of Normaland Light-weight Concrete Mixtures with High Volume SCM)

  • 문재성;양근혁
    • 한국건설순환자원학회논문집
    • /
    • 제2권4호
    • /
    • pp.354-359
    • /
    • 2014
  • 이 연구의 목적은 혼화재 다량 치환 경량 및 보통중량 콘크리트의 압축 피로 특성 평가이다. 사용된 결합재는 시멘트 30%, 플라이애쉬 20%, 고로슬래그 50%이다. 콘크리트의 설계 압축강도는 40MPa 이다. 반복하중은 최대 응력비가 정적 콘크리트 압축강도의 75%, 80% 및 90%와 최소 응력비가 정적 강도의 10% 범위에서 1Hz의 속도로 가력하였다. 실험결과 혼화재 다량 치환 경량콘크리트의 피로수명은 혼화재 다량치환 보통중량 콘크리트에 비해 다소 낮았다. 최대응력에서의 피로변형률 값은 피로수명의 약 90% 이후부터 정정 응력-변형률 곡선의 하강부와 교차하였다.

임펠러식 쇼트피닝 머신에 의한 표면 커버리지 시뮬레이션 (Simulation of Surface Coverage Made by Impeller Type Shot-peening Machines)

  • 신기훈
    • 한국CDE학회논문집
    • /
    • 제19권1호
    • /
    • pp.12-18
    • /
    • 2014
  • Shot-peening is frequently used on various mechanical parts because it can improve the fatigue life of components by generating compressive residual stresses on the surface. This can be done by repeatedly hitting the work-piece surface with small balls and making indentations on it. In fact, finding optimal peening time among various peening parameters is the most important. Under-peening can not improve the fatigue life sufficiently while over-peening causes cracks and reduces fatigue life in contrast. In general, optimal peening time is experimentally determined by measuring arc-height using Almen-strip in accordance with SAE J442 standard. To save the time and efforts spent in carrying out experiments to find optimal peening time, this paper presents a computer simulation algorithm for the estimation of surface coverage made by impeller type shot-peening machines (PMI-0608). Surface coverage is defined as the proportion of the work-piece surface that has been indented in a given time of shot-peening. An example (standard tensile test specimen) is presented to validate the proposed method.

평균 응력을 고려한 음향 하중을 받는 항공기 센서 포드 외피 구조의 내구 수명 분석 (Fatigue Life Prediction for the Skin Structures of Aircraft Sensor Pod Under Acoustic Load with Mean Stress)

  • 전민혁;김연주;조현준;이미연;김인걸;이한솔;조재명;배종인;박기영
    • 한국군사과학기술학회지
    • /
    • 제26권1호
    • /
    • pp.1-9
    • /
    • 2023
  • The skin structure of sensor pod mounted on the exterior of aircraft can be exposed to the acoustic dynamic load and static load such as aerodynamic pressure and inertial load during flight. Fatigue life prediction of structural model under acoustic load should be performed and also differential stiffness of model modified by static load should be considered. The acoustic noise test spectrum of MIL-STD-810G was applied to the structural model and the stress response power spectral density (PSD) was calculated. The frequency response analysis was performed with or without prestress induced by inplane static load, and the response spectrum was compared. Time series data was generated using the calculated PSD, and the time and frequency domain fatigue life were predicted and compared. The variation of stress response spectrum due to static load and predicted fatigue life according to the different structural model considering mean stress were examined and decreasing fatigue life was observed in the model with prestress of compressive static load.