• Title/Summary/Keyword: Compressive Failure

Search Result 897, Processing Time 0.036 seconds

Analytical Study on Ductility Index of Reinforced Concrete Flexural Members (철근 콘크리트 휨부재의 연성지수에 관한 해석적 연구)

  • Lee, Jae Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.391-402
    • /
    • 1994
  • One of the most important design concept for reinforced concrete structures is to achieve a ductile failure mode, and also moment redistribution for economic design is possible in case that adequate ductility is provided. Flexural ductility index is, therefore, used as a reference for possibility of moment redistribution as well as for prediction of flexural behavior of designed R.C. structures. Ductility index equations, however, provide approximate values due to the linear concrete compressive stress assumption at the tension steel yielding state. Theoretically more exact ductility index is calculated by a numerical analysis with the realistic stress-strain curves for concrete and steel to be compared with the result from tire ductility index equations. Variation of ductility index for the selected variables and the reasonable maximum tension steel ratio for doubly reinforced section are investigated. A moment-curvature curve model is also proposed for future research on moment redistribution.

  • PDF

The Stress Concentration Caused by Pin-hole in Femur after Computer-navigated Total Knee Arthroplasty: A Finite Element Analysis (컴퓨터 네비게이션을 이용한 슬관절 전치환술에서 핀 홀에 의한 응력 집중: 유한요소해석)

  • Park, Hyung-Kyun;Kim, Yoon-Hyuk;Park, Won-Man;Kim, Kyung-Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.6
    • /
    • pp.451-456
    • /
    • 2008
  • Total knee arthroplasty(TKA) using computer-assisted navigation has been increased in order to improve the accuracy of femoral and tibial components implantation. Recently, a few clinical studies have reported on the femoral stress fracture after TKA using computer-assisted navigation. The purpose of this study is to investigate the stress concentration around the femoral pin-hole for different pin-hole diameter, the modes of pin penetration by finite element analysis to understand the effects of pin-hole parameters on femoral stress fracture risk. A three-dimensional finite element model of a male femur was reconstructed from 1 mm thick computed tomography(CT) images. The bone was rigidly fixed to a 25 mm above the distal end and 1500 N of axial compressive force and 12 Nm of axial torsion were applied at the femoral head. For all cases, transcortical pin penetration mode showed the highest stress fracture risk and unicortical pin penetration mode showed the lowest stress concentration. Pin-hole diameter increased the stress concentration, but pin number did not increase the stress dramatically. The results of this study provided a biomechanical guideline for pin-hole fracture risk of the computer navigated TKA.

A Life-Threatening Case of Tubular Esophageal Duplication Complicated with Aneurysm of the Aorta (대동맥류를 초래한 식도 중복 1례)

  • Jung, Yeon Kyung;Lee, Gyeong Hoon;Chung, Hai Lee;Park, Ki Sung;Jung, Kyung-Jae;Cho, Chang Ho
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.6
    • /
    • pp.655-659
    • /
    • 2005
  • Esophageal duplication cysts are rare congenital lesions that occur as a result of a failure in the tubulation of the esophagus. They are most frequently single, tubular, or cystic. They may cause compressive symptoms or may be discovered incidentally on chest radiographs. They become symptomatic when complications develop. Symptoms often are related to the location of the duplication; esophageal lesions can create respiratory difficulties. The definitive diagnosis of esophageal duplication cysts requires the pathological evaluation of the cyst after surgical removal. We experienced a rare tubular esophageal duplication, in a 2-month old girl who presented with fever and grunting. This is the first reported case in which the sequence of events of ruptured tubular esophageal duplication with empyema, mediastinitis and aneurysm occured.

Mid-length lateral deflection of cyclically-loaded braces

  • Sheehan, Therese;Chan, Tak-Ming;Lam, Dennis
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1569-1582
    • /
    • 2015
  • This study explores the lateral deflections of diagonal braces in concentrically-braced earthquake-resisting frames. The performance of this widely-used system is often compromised by the flexural buckling of slender braces in compression. In addition to reducing the compressive resistance, buckling may also cause these members to undergo sizeable lateral deflections which could damage surrounding structural components. Different approaches have been used in the past to predict the mid-length lateral deflections of cyclically loaded steel braces based on their theoretical deformed geometry or by using experimental data. Expressions have been proposed relating the mid-length lateral deflection to the axial displacement ductility of the member. Recent experiments were conducted on hollow and concrete-filled circular hollow section (CHS) braces of different lengths under cyclic loading. Very slender, concrete-filled tubular braces exhibited a highly ductile response, undergoing large axial displacements prior to failure. The presence of concrete infill did not influence the magnitude of lateral deflection in relation to the axial displacement, but did increase the number of cycles endured and the maximum axial displacement achieved. The corresponding lateral deflections exceeded the deflections observed in the majority of the previous experiments that were considered. Consequently, predictive expressions from previous research did not accurately predict the mid-height lateral deflections of these CHS members. Mid-length lateral deflections were found to be influenced by the member non-dimensional slenderness (${\bar{\lambda}}$) and hence a new expression was proposed for the lateral deflection in terms of member slenderness and axial displacement ductility.

Seismic behavior of stiffened concrete-filled double-skin tubular columns

  • Shekastehband, B.;Mohammadbagheri, S.;Taromi, A.
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.577-598
    • /
    • 2018
  • The imperfect steel-concrete interface bonding is an important deficiency of the concrete-filled double skin tubular (CFDST) columns that led to separating concrete and steel surfaces under lateral loads and triggering buckling failure of the columns. To improve this issue, it is proposed in this study to use longitudinal and transverse steel stiffeners in CFDST columns. CFDST columns with different patterns of stiffeners embedded in the interior or exterior surfaces of the inner or outer tubes were analyzed under constant axial force and reversed cyclic loading. In the finite element modeling, the confinement effects of both inner and outer tubes on the compressive strength of concrete as well as the effect of discrete crack for concrete fracture were incorporated which give a realistic prediction of the seismic behavior of CFDST columns. Lateral strength, stiffness, ductility and energy absorption are evaluated based on the hysteresis loops. The results indicated that the stiffeners had determinant role on improving pinching behavior resulting from the outer tube's local buckling and opening/closing of the major tensile crack of concrete. The lateral strength, initial stiffness and energy absorption capacity of longitudinally stiffened columns with fixed-free end condition were increased by as much as 17%, 20% and 70%, respectively. The energy dissipation was accentuated up to 107% for fixed-guided end condition. The use of transverse stiffeners at the base of columns increased energy dissipation up to 35%. Axial load ratio, hollow ratio and concrete strength affecting the initial stiffness and lateral strength, had negligible effect of the energy dissipation of the columns. It was also found that the longitudinal stiffeners and transverse stiffeners have, respectively, negative and positive effects on ductility of CFDST columns. The conclusions, drawn from this study, can in turn, lead to the suggestion of some guidelines for the design of CFDST columns.

Material structure generation of concrete and its further usage in numerical simulations

  • Husek, Martin;Kala, Jiri
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.335-344
    • /
    • 2018
  • The execution of an experiment is a complex affair. It includes the preparation of test specimens, the measurement process itself and also the evaluation of the experiment as such. Financial requirements can differ significantly. In contrast, the cost of numerical simulations can be negligible, but what is the credibility of a simulated experiment? Discussions frequently arise concerning the methodology used in simulations, and particularly over the geometric model used. Simplification, rounding or the complete omission of details are frequent reasons for differences that occur between simulation results and the results of executed experiments. However, the creation of a very complex geometry, perhaps all the way down to the resolution of the very structure of the material, can be complicated. The subject of the article is therefore a means of creating the material structure of concrete contained in a test specimen. Because a complex approach is taken right from the very start of the numerical simulation, maximum agreement with experimental results can be achieved. With regard to the automation of the process described, countless material structures can be generated and randomly produced samples simulated in this way. Subsequently, a certain degree of randomness can be observed in the results obtained, e.g., the shape of the failure - just as is the case with experiments. The first part of the article presents a description of a complex approach to the creation of a geometry representing real concrete test specimens. The second part presents a practical application in which the numerical simulation of the compressive testing of concrete is executed using the generated geometry.

The Compressive Strength of Thin-Walled Cold-Formed Steel Studs with Slits in the Web (복부에 슬릿이 있는 박판냉간성형형강 스터드의 압축강도)

  • Kwon, Young-Bong;Soe, Eung-Kyu;Lim, Duk-Man;Kim, Gap-Deuk;Kwon, In-Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.189-197
    • /
    • 2012
  • The cold-formed steel stud, which has been used as a load-bearing member of wall panels for steel houses, poses a significant problem in insulation due to heat bridging of the web. Therefore, some additional thermal insulating materials are required. In order to solve this problem, the cold-formed steel thermal stud with slits in the web was developed. However, estimating the structural strength of thermal studs is very difficult because of the arrangement of perforations. In this paper, an analytical and experimental research on thermal studs is described. Three types of studs with different length, pitch and arrangement of slits were tested to failure. A simple design approach was proposed based on the test results. The proposed method adopted the direct strength method, based on the elastic local and distortional buckling stress of plain studs with equivalent thickness in the web instead of thermal studs. The predictions using the proposed method were compared with test results for verification and the adequacy of the proposed method was confirmed.

A Study on the Stability of Group Piles Installed in the Deep Sea to the Seaquake (해진에 대한, 심해에 설치된 군말뚝의 안정성에 관한 연구)

  • 최용규;남문석;정두환
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.31-42
    • /
    • 2000
  • In this study, the stability of group piles installed in deep sea to the seaquake was studied by performing the calibration chamber model tests for open-ended pipe piles, grouted piles under soil plug and close-ended piles installed in the simulated deep sea. For each case (a single pile, 2-pile and 4-pile groups), series of seaquake tests were performed. While, during the simulated seaquake, the compressive capacity of the single open-ended pile depended on pile penetration depth(=7m), were found to be stable. But, a single grouted pile with penetration depth of 13m kept "mobility" state, the one with penetration depth of 20m was stable and grouted pile groups with penetration depth of 7m were stable regardless of pile penetration depth. By grouting soil plug of open-ended piles and soil under the pile toe of open-ended pipe piles installed in the deep sea, failure of soil plugging was prevented. Thus, close-ended piles were more stable than open-ended pile against the seaquake motionake motion.

  • PDF

The Effect of Anchorage of Reinforcement in Slab-Column Connection (슬래브-기둥 접합부에서 전단보강체에 정창성능에 따른 영향)

  • Choi, Huyn-Ki;Kim, Jun-Seo;Lee, Moon-Sung;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.185-188
    • /
    • 2008
  • Flat plate system has structural weakness such as punching shear. Punching shear resistance can be increase by using a lager column section and effective depth, higer concrete compressive strength, and more flexural reinforcement ratio. But using a shear reinforcement is most economical, enable, workable solution in flat plate. The slab with thickness smaller than 250mm can not perform effectively due to insufficient development length of shear reinforcement in the slab. In case of proposed reinforcements, since the shear reinforcements were installed between the top bar and the bottom bar, shear elements generated slip failure before they reached yield. strength. effect of anchorage strength were effective anchorage length, concrete strength, diameter of shear element and anchorage detail. considering effect of slab thickness and concrete strength, formula of K factor propose in thin flat plate slab. by considering effect of anchorage length and concrete strength, strength of shear reinforcement will be computed correctly in thin flat plate slab.

  • PDF

A Development of the Lightweight Wearable Robot with Carbon Fiber Composite (탄소섬유 복합재를 이용한 경량 착용형 로봇의 개발)

  • Lee, Jeayoul;Jeon, Kwangwoo;Choi, Jeayeon;Chung, Goobong;Suh, Jinho;Choi, Ilseob;Shin, Kwangbok
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.81-88
    • /
    • 2015
  • In this paper, we evaluate structural integrity of the wearable robot by using finite element analysis, which is made of CFRP(Carbon Fiber Reinforced Plastic) composite materials to be lightened. On the basis of the ASTM(American Standard Test Method), mechanical tests of the material are carried out in tensile, compressive and shear test for analytical evaluation. With the tested composite material, the main frame and two femoral frames of the robot is redesigned to satisfy the lightening design requirements. It is verified with the structural analysis that the redesigned frames are good for the part of the wearable robot.