• 제목/요약/키워드: Compressive Failure

검색결과 901건 처리시간 0.024초

Effect of hydraulic distribution on the stability of a plane slide rock slope under the nonlinear Barton-Bandis failure criterion

  • Zhao, Lian-Heng;Cao, Jingyuan;Zhang, Yingbin;Luo, Qiang
    • Geomechanics and Engineering
    • /
    • 제8권3호
    • /
    • pp.391-414
    • /
    • 2015
  • In this paper, stabilities of a plane slide rock slope under different hydraulic distributions were studied based on the nonlinear Barton-Bandis (B-B) failure criterion. The influence of various parameters on the stability of rock slopes was analyzed. Parametric analysis indicated that studying the factor of safety (FS) of planar slide rock slopes using the B-B failure criterion is both simple and effective and that the effects of the basic friction angle of the joint (${\varphi}_b$), the joint roughness coefficient (JRC), and the joint compressive strength (JCS) on the FS of a planar slide rock slope are significant. Qualitatively, the influence of the JCS on the FS of a slope is small, whereas the influences of the ${\varphi}_b$ and the JRC are significant. The FS of the rock slope decreases as the water in a tension crack becomes deeper. This trend is more significant when the flow outlet is blocked, a situation that is particularly prevalent in regions with permafrost or seasonal frozen soil. Finally, the work is extended to study the reliability of the slope against plane failure according to the uncertainty from physical and mechanics parameters.

교량 바닥판의 파괴형태를 고려한 임계보강재비의 이론적 산정 (Theoretical Assessment of Limit Strengthening Ratio of Bridge Deck Based on the Failure Characteristic)

  • 심종성;오홍섭;유재명
    • 콘크리트학회논문집
    • /
    • 제14권1호
    • /
    • pp.110-117
    • /
    • 2002
  • 공용하중의 증가 등에 따른 교량 바닥판의 성능향상 시 바닥판 두께, 콘크리트 강도, 철근강도 그리고 철근비와 더불어 보강재비에 의하여 바닥판의 파괴양상은 바뀌어 질 수 있다. 일반적으로 교량 바닥판의 파괴양상은 주철근 및 배력철근의 항복 이후에 펀칭전단파괴가 발생하는 것으로 나타나고 있으며, 외부부착공법을 적용함에 있어서 이러한 파괴양상을 유지해야 될 것으로 판단된다. 본 연구에서는 바닥판에 사용된 철근비 및 보강재비 등을 주요변수로 하여 항복선 이론 및 소성 펀칭모델 등을 적용한 항복강도 및 파괴강도를 해석하였으며, 철근비에 따른 임계보강재량을 제안하였다.

Crack pattern and failure mode prediction of SFRC corbels: Experimental and numerical study

  • Gulsan, Mehmet Eren;Cevik, Abdulkadir;Mohmmad, Sarwar Hasan
    • Computers and Concrete
    • /
    • 제28권5호
    • /
    • pp.507-519
    • /
    • 2021
  • In this study, a new procedure was proposed in order to predict the crack pattern and failure mode of steel fiber reinforced concrete (SFRC) corbels. Moreover, an experimental study was carried out in order to investigate the effect of several parameters, such as compressive strength, tensile strength, steel fiber ratio, shear span on the mechanical behavior of SFRC corbels in detail. Totally, 24 RC and SFRC corbels were prepared for the experimental study. Experimental results indicate that each investigated parameter has noticeable effect on the load capacity and failure mode of SFRC corbels. Moreover, finite element (FE) model of the tested corbels were prepared and efficiency of FE model was investigated for further studies. Comparison of FE and experimental results show that there is an acceptable fit between them regarding load capacity and crack patterns. Thereafter, parametric study was carried out via FE analyses in order to obtain a methodology for crack pattern and failure mode prediction of SFRC corbels. As a result of parametric studies, a new procedure was proposed as flowcharts in order to predict the failure mode of SFRC corbels for normal and high strength concrete class separately.

Effect of spiral spacing on axial compressive behavior of square reinforced concrete filled steel tube (RCFST) columns

  • Qiao, Qiyun;Zhang, Wenwen;Mou, Ben;Cao, Wanlin
    • Steel and Composite Structures
    • /
    • 제31권6호
    • /
    • pp.559-573
    • /
    • 2019
  • Spiral spacing effect on axial compressive behavior of reinforced concrete filled steel tube (RCFST) stub column is experimentally investigated in this paper. A total of twenty specimens including sixteen square RCFST columns and four benchmarked conventional square concrete filled steel tube (CFST) columns are fabricated and tested. Test variables include spiral spacing (spiral ratio) and concrete strength. The failure modes, load versus displacement curves, compressive rigidity, axial compressive strength, and ductility of the specimens are obtained and analyzed. Especially, the effect of spiral spacing on axial compressive strength and ductility is investigated and discussed in detail. Test results show that heavily arranged spirals considerably increase the ultimate compressive strength but lightly arranged spirals have no obvious effect on the ultimate strength. In practical design, the effect of spirals on RCFST column strength should be considered only when spirals are heavily arranged. Spiral spacing has a considerable effect on increasing the post-peak ductility of RCFST columns. Decreasing of the spiral spacing considerably increases the post-peak ductility of the RCFSTs. When the concrete strength increases, ultimate strength increases but the ductility decreases, due to the brittleness of the higher strength concrete. Arranging spirals, even with a rather small amount of spirals, is an economical and easy solution for improving the ductility of RCFST columns with high-strength concrete. Ultimate compressive strengths of the columns are calculated according to the codes EC4 (2004), GB 50936 (2014), AIJ (2008), and ACI 318 (2014). The ultimate strength of RCFST stub columns can be most precisely evaluated using standard GB 50936 (2014) considering the effect of spiral confinement on core concrete.

Aspects of size effect on discrete element modeling of normal strength concrete

  • Gyurko, Zoltan;Nemes, Rita
    • Computers and Concrete
    • /
    • 제28권5호
    • /
    • pp.521-532
    • /
    • 2021
  • Present paper focuses on the modeling of size effect on the compressive strength of normal concrete with the application of Discrete Element Method (DEM). Test specimens with different size and shape were cast and uniaxial compressive strength test was performed on each sample. Five different concrete mixes were used, all belonging to a different normal strength concrete class (C20/25, C30/37, C35/45, C45/55, and C50/60). The numerical simulations were carried out by using the PFC 5 software, which applies rigid spheres and contacts between them to model the material. DEM modeling of size effect could be advantageous because the development of micro-cracks in the material can be observed and the failure mode can be visualized. The series of experiments were repeated with the model after calibration. The relationship of the parallel bond strength of the contacts and the laboratory compressive strength test was analyzed by aiming to determine a relation between the compressive strength and the bond strength of different sized models. An equation was derived based on Bazant's size effect law to estimate the parallel bond strength of differently sized specimens. The parameters of the equation were optimized based on measurement data using nonlinear least-squares method with SSE (sum of squared errors) objective function. The laboratory test results showed a good agreement with the literature data (compressive strength is decreasing with the increase of the size of the specimen regardless of the shape). The derived estimation models showed strong correlation with the measurement data. The results indicated that the size effect is stronger on concretes with lower strength class due to the higher level of inhomogeneity of the material. It was observed that size effect is more significant on cube specimens than on cylinder samples, which can be caused by the side ratios of the specimens and the size of the purely compressed zone. A limit value for the minimum size of DE model for cubes and cylinder was determined, above which the size effect on compressive strength can be neglected within the investigated size range. The relationship of model size (particle number) and computational time was analyzed and a method to decrease the computational time (number of iterations) of material genesis is proposed.

Evaluate the effect of steel, polypropylene and recycled plastic fibers on concrete properties

  • Fayed, Sabry;Mansour, Walid
    • Advances in concrete construction
    • /
    • 제10권4호
    • /
    • pp.319-332
    • /
    • 2020
  • The impacts of reinforcing concrete matrix with steel fibers, polypropylene fibers and recycled plastic fibers using different volume fractions of 0.15%, 0.5%, 1.5% and 2.5% on the compressive and tensile characteristics are experimentally investigated in the current research. Also, flexural behavior of plain concrete (PC) beams, shear performance of reinforced concrete (RC) beams and compressive characteristics of both PC and RC columns reinforced with recycled plastic fibers were studied. The experimental results showed that the steel fibers improved the splitting tensile strength of concrete higher than both the polypropylene fibers and recycled plastic fibers. The end-hooked steel fibers had a positive effect on the compressive strength of concrete while, the polypropylene fibers, the recycled plastic fibers and the rounded steel fibers had a negative impact. Compressive strength of end-hooked steel fiber specimen with volume fraction of 2.5% exhibited the highest value among all tested samples of 32.48 MPa, 21.83% higher than the control specimen. The ultimate load, stiffness, ductility and failure patterns of PC and RC beams in addition to PC and RC columns strengthened with recycled plastic fibers enhanced remarkably compared to non-strengthened elements. The maximum ultimate load and stiffness of RC column reinforced with recycled plastic fibers with 1.5% volume fraction improved by 21 and 15%, respectively compared to non-reinforced RC column.

Compressive behavior of rectangular sandwich composite wall with different truss spacings

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xing-Yu;Chen, Yuan-Ze
    • Steel and Composite Structures
    • /
    • 제34권6호
    • /
    • pp.783-794
    • /
    • 2020
  • Steel-concrete-steel sandwich composite wall is composed of two external steel plates and infilled concrete core. Internal mechanical connectors are used to enhance the composite action between the two materials. In this paper, the compressive behavior of a novel sandwich composite wall was studied. The steel trusses were applied to connect the steel plates to the concrete core. Three short specimens with different truss spacings were tested under compressive loading. The boundary columns were not included. It was found that the failure of walls started from the buckling of steel plates and followed by the crushing of concrete. Global instability was not observed. It was also observed that the truss spacing has great influence on ultimate strength, buckling stress, ductility, strength index, lateral deflection, and strain distribution. Three modern codes were introduced to calculate the capacity of walls. The comparisons between test results and code predictions show that AISC 360 provides significant underestimations while Eurocode 4 and CECS 159 offer overestimated predictions.

인장/압축 Fragmentation 시험법과 음향방출을 이용한 Carbon Fiber/Bismaleimide (BMI) Composites 의 계면 평가와 미세파괴 메커니즘 연구 (Interfacial Evaluation and Microfailure Mechanisms of Carbon Fiber/Bismaleimide (BMI) Composites using Tensile/compressive Fragmentation Tests and Acoustic Emission)

  • 김진원;박종만;윤동진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.79-83
    • /
    • 2000
  • Interfacial and microfailure properties of carbon liber/bismaleimide (BMI) composites were evaluated using both tensile fragmentation and compressive Broutman tests with acoustic emission (AE). Since BMI is rather difficult matrix to apply for the conventional fragmentation test because of its too low elongation and too brittle and high modulus properties, dual matrix composite system was applied. After carbon fiber/BMI composite was prepared for rod shape by controlling differing curing stage, composites rod was embedded in toughened epoxy as outer matrix. The typical microfailure modes including fiber break, matrix cracking, and interlayer failure were observed during tensile testing, whereas the diagonal slippage in fiber ends was observed during compressive test. On the other hand, AE amplitudes of BMI matrix fracture were higher than carbon fiber tincture under tensile test because BMI matrix has very brittle and high modulus. The waveform of signals coming from BMI matrix fractures was consistent with AE amplitude result under tensile tests.

  • PDF

Study of geotechnical properties of a gypsiferous soil treated with lime and silica fume

  • Moayyeri, Neda;Oulapour, Masoud;Haghighi, Ali
    • Geomechanics and Engineering
    • /
    • 제17권2호
    • /
    • pp.195-206
    • /
    • 2019
  • The gypsiferous soils are significantly sensitive to moisture and the water has a severe destructive effect on them. Therefore, the effect of lime and silica fume addition on their mechanical properties, when subjected to water, is investigated. Gypsiferous soil specimens were mixed with 1, 2 and 3% lime and 1, 3, 5 and 7% silica fume, in terms of the dry weight of soil. The specimens were mixed at optimum moisture content and cured for 24 hours, 7 and 28 days. 86 specimens in the sizes of unconfined compression strength test mold were prepared to perform unconfined compressive strength and durability tests. The results proved that adding even 1% of each of these additives can lead to a 15 times increase in unconfined compressive strength, compared with untreated specimen, and this increases as the curing time is prolonged. Also, after soaking, the compressive strength of the specimens stabilized with 2 and 3% lime plus different percentages of silica fume was considerably higher than before soaking. The durability of the treated specimens increased significantly after soaking. Direct shear tests showed that lime treatment is more efficient than silica fume treatment. Moreover, it is concluded that the initial tangent modulus and the strain at failure increased as the normal stress of the test was increased. Also, the higher lime contents, up to certain limits, increase the shear strength. Therefore, simultaneous use of lime and silica fume is recommended to improve the geotechnical properties of gypsiferous soils.

TEMPERATURE CONTROL AND COMPRESSIVE STRENGTH ASSESSMENT OF IN-PLACE CONCRETE STRUCTURES USING THE WIRELESS TEMPERATURE MEASURING SYSTEM BASED ON THE UBIQUITOUS SENSOR NETWORK

  • Ho Kyoo JO;Hyung Rae KIM;Tae Koo KIM
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.794-799
    • /
    • 2009
  • The temperature control of in-place concrete is the most important factor for an early age of curing concrete. Heat stress of mass concrete caused by the heat of hydration can induce the crack of concrete, and a frost damage from cold weather casting concrete results defect on compressive strength and degradation of durability. Therefore, success and failure of concrete work is dependant on the measurement and control of concrete temperature. In addition, the compressive strength assessment of in-place concrete obtained from the maturity calculated from the history of temperature make a reduction of construction cycle time, possible. For that purpose, wireless temperature measuring system was developed to control temperature and assess strength of concrete. And, it was possible to monitor the temperature of concrete over 1km apart from site office and to take a proper measure; mesh-type network was developed for wireless sensor. Furthermore, curing control system that contains the program capable to calculate the maturity of concrete from the history of temperature and to assess the compressive strength of concrete was established. In this study, organization and practical method of developed curing control system are presented; base on in-place application case.

  • PDF