• 제목/요약/키워드: Compressive Characteristics

검색결과 1,962건 처리시간 0.029초

흙의 粒度分捕가 石灰混合土의 强度特性에 미치는 影響 (Effects of Grain Size Distribution in Soil on the Strength Characteristics of Lime-Soil Mixtures)

  • 조성정;강예묵
    • 한국농공학회지
    • /
    • 제27권2호
    • /
    • pp.57-71
    • /
    • 1985
  • The characteristics of compaction and unconfined compressive strength were investigated by mixing with lime to all soils adjusted by given percentages of two kinds of clays to sand to obtain the most effective distribution of grain size and the optimum lime content for soil stabilization. In addition, unconfined compressive strength and durability tested by adding of sodium metasilicate, sodium sulfate, sodium carbonate, sodium gydroxide and magnesium oxide to lime-soil mixture mixed with 8 percent lime to adjusted soil having the mixing percentage of 60 percent of cohesive black clay and 40 percent of sand by weight to get the effect and the optimum content of chemicals. The results obtained were as follows; 1.With the addition of more lime, the optimum moisture content was increased, and the maximum dry density was decreased, whereas the more the amount of clay and the less was the maximum drt density. 2. In the soil having more fine grain size the unconfined compressive strength was larger in the earlier stage of curing period, in accordance with the longer period, the mixing percentages of sand to clay showing the maximum unconfined compressive strength, on the basis of 28-day strength, were 60% : 40% (black clay) and 40% : 60% (brown clay) respectively. 3. The reason why the soil adjusted with black clay was remarkably bigger in the unconfined compressive strength than ones adjusted with brown clay for all specimen of lime-soil mixture was the difference in the kind of clay, the amount of chemical compositions the value of pH. Black clay was mainly composed of halloysite that reacted with lime satisfactorily, whereas the main composition of brown clay was kaolinite that was less effect in the enhance of unconfined compressive strength. Also the difference of unconfined compressive strength was because black clay was larger in the amount of composition of calcium oxide and magnesium oxide in the value of pH affecting directly on the unconfined compressive strength of lime-soil mixture than brown clay. 4. In the lime-soil mixture mixed with 8 percent of lime to soil that mixing percentage of sand to black clay was 60% : 40%, on the standard of 7-day strength, the effect of chemical was arranged in the order of magnesium oxide, sodium carbonate, sodium sulfate, sodium hydroxide and sodium metasilicate. 5. The optimum amount of chemical being applicable to the maximum unconfined compressive strength of lime-chemical-soil mixture was 1 percent by weight for air dry soil in the case of adding sodium carbonated and 0.75 percent on sodium hydroxide, the unconfined compressive strength was increased continuously with increase of the amount of chemical up to 2 percent of chemical content is the lime-chemical-soil mixture added sodium metasilicate, sodium sulfate and magnesium oxide. 6. It was considered that the chemical played and accelerant role of early revelation of strength because the rate of increase of unconfined compressive strength of all of lime-chemical-soil mixtures was largest on the 7-day cured specimen. 7. The effect of test on freezing and thawing after adding suitable amount of chemical on the lime-soil mixture mixed with 8 percent of lime to soil that mixing percentage of sand to black clay was 60% : 40% was arranged in the order of magnesium oxide, sodium carbonate, sodium sulfate, sodium metasilicate and sodium hydroxide.

  • PDF

두께가 두꺼운 카본화이버/에폭시 적층복합재의 해저환경에서의 압축특성 (Compressive behavior of thick carbon fiber/epoxy composites in a submarine environment)

  • 이지훈;이경업;김현주;정동호
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.225-227
    • /
    • 2004
  • The compressive characteristics of thick carbon/epoxy composite in a submarine environment was investigated in this study. The specimens made of thick carbon fiber/epoxy composite that were immersed into seawater Jar thirteen months. the seawater content at saturation was about $1.2\%$ of the specimen weight. Compressive tests have been performed in different hydrostatic pressures of 0.1 MPa, 100 MPa, 200 MPa, and 270 MPa. The results showed that the compressive elastic modulus increased about $12.3\%$ as the hydrostatic pressure increased from 0.1 MPa to 200 MPa. The results also showed that compressive fracture strength increased $28\%$ and compressive fracture strain increased $8.5\%$ as the hydrostatic pressure increased from 0.1 MPa to 270 MPa.

  • PDF

스프링강의 피로파괴에 미치는 압축잔류응력의 영향 (A Study on the effect of Compressive residual stress on fatigue crack propagation behavior of the spring steel)

  • 진영범;박경동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.348-352
    • /
    • 2004
  • Recently the steel parts used for automiles and trains are required to be used under higher stress than ever before in need of the weight down. However, threr are a lot of problems with developing such of fatigue strength and fatigue life are mainly focused on by adopting residual stress. And got the following characteristics from crack growth test carried out stress ratio. Fatigue life shows more improvement in the Un-peening material. And Compressive residual stress of surface on the Shot-peening processed operate resistance force of fatigue. So we cam obtain fallowings. (1) The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is dependent of Paris equation. (2) Although the maximum compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maximum compressive residual stress is formed in surface. (3) The threshold stress intensity factor range is increased with increasing compressive residual stress.

  • PDF

Dynamic characteristics of combined isolation systems using rubber and wire isolators

  • Lee, Seung-Jae;Truong, Gia Toai;Lee, Ji-Eon;Park, Sang-Hyun;Choi, Kyoung-Kyu
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.1071-1084
    • /
    • 2022
  • The present study aims to investigate the dynamic properties of a novel isolation system composed of separate rubber and wire isolators. The testing program comprised pure compressive, pure-shear, compressive-stress dependence, and shear-strain dependence tests that used full-scale test specimens according to ISO 22762-1. A total of 22 test specimens were fabricated and investigated. Among the tests, the pure compressive test was a destructive test that reached up to the failure stage, whereas the others were nondestructive tests before the failure stage. Similar to the pure-shear test, at each compressive-stress level in the compressive dependence test or at each shear-strain level in the shear-strain dependence test, the cyclic loading was conducted for three cycles. In the nondestructive tests, examination of the dynamic shear properties in the X-direction was independent of the Y-direction. The test results revealed that the increase in the shear strain increased the energy dissipation but decreased the damping ratio, whereas the increase in the compressive stress increased the damping ratio. In addition, a macro model was developed to simulate the load-displacement response of the isolation systems, and the prediction results were consistent with the experimental results.

Evaluation of strength characteristics of cement-stabilized soil using the electrical resistivity measurement

  • Kean Thai Chhun;Chan-Young Yune
    • Geomechanics and Engineering
    • /
    • 제33권3호
    • /
    • pp.261-269
    • /
    • 2023
  • In this study, the compressive strength of cement stabilized soil was predicted using the electrical resistivity measurement. The effects of the water to cement (w/c) ratio and recovered Carbon Black (rCB) contents were examined. A series of electrical resistivity and compressive strength tests were conducted on two types of stabilized soil after 28 days of curing. Multiple nonlinear regression (MNLR) analysis was used to evaluate the relationship between the compressive strength and the electrical resistivity in terms of the rCB, Cu (uniformity coefficient), and w/c ratio. The results showed that the w/c ratio and Cu have a strong influence on the compressive strength and electrical resistivity of the cement stabilized soil compared to the rCB content. The use of a small amount of rCB led to a decrease in the void space in the specimen and was attributed to the increase strength and decrease electrical resistivity. A high w/c ratio also induced a low electrical resistivity and compressive strength, whereas 3% rCB in the cemented soil provided the optimum strength for all w/c ratios. Finally, a prediction equation for the compressive strength using the electrical resistivity measurement was suggested based on its reliability, time effectiveness, non-destructiveness, and cost-effectiveness.

Correlation of rebound hammer and ultrasonic pulse velocity methods for instant and additive-enhanced concrete

  • Yudhistira J.U. Mangasi;Nadhifah K. Kirana;Jessica Sjah;Nuraziz Handika;Eric Vincens
    • Structural Monitoring and Maintenance
    • /
    • 제11권1호
    • /
    • pp.41-55
    • /
    • 2024
  • This study aims to determine the characteristics of concrete as identified by Rebound Hammer and Ultrasonic Pulse Velocity (UPV) tests, focusing particularly on their efficacy in estimating compressive strength of concrete material. The study involved three concrete samples designed to achieve a target strength of 29 MPa, comprising normal concrete, instant concrete, and concrete with additives. These were cast into cube specimens measuring 150×150×150 mm. Compressive strength values were determined through both destructive and non-destructive testing on the cubic specimens. As a result, the non-destructive methods yielded varying outcomes for each correlation approach, influenced by the differing constituent materials in the tested concretes. However, normal concrete consistently showed the most reliable correlation, followed by concrete with additives, and lastly, instant concrete. The study found that combining Rebound Hammer and UPV tests enhances the prediction accuracy of compressive strength of concrete. This synergy was quantified through multivariate regression, considering UPV, rebound number, and actual compressive strength. The findings also suggest a more significant influence of the Rebound Hammer measurements on predicting compressive strength for BN and BA, whereas UPV and RN had a similar impact on predicting BI compressive strength.

콘크리트 충전 브릿지 플레이트의 압축강도에 대한 실험적 연구 (An Experimental study on Evaluation of Compressive Strength For Encased-Concrete Corrugated Steel Plate)

  • 심종성;이은호;박성재;김현중;김태수;박지수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.55-56
    • /
    • 2009
  • 본 연구에서는 현재의 시공성을 고려한 이음부 압축특성 및 시공 시 발생 가능한 압축력에 따른 이음부 특성을 규명하고자 한다.

  • PDF

탄소섬유직물/페놀 복합재료의 압축 특성 (Compressive Characteristics of Carbon Fabric-Phenol Composites)

  • 박동창;김성수;김병철;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.178-181
    • /
    • 2004
  • In this work, the carbon fabric reinforced phenolic composite is applied for heavy-duty journal bearings. The through thickness compressive strength (TTCS), which is one of the most important characteristics for the bearing material, is measured and analyzed with respect to the stacking sequence and composite thickness. Also, the coefficient of thermal expansion (CTE) and thermal conductivity of the composite in the thickness direction were measured with respect to stacking sequence.

  • PDF

굵은 골재 최대치수 및 시멘트 종류에 따른 압축강도와 전단파 속도의 상관관계에 대한 실험적 연구 (An Experimental Study on Relation between compressive strength and Shear Wave velocity for characteristics of coarse aggregate size and type of cement)

  • 안지환;전성일;남정희;권수안
    • 한국도로학회논문집
    • /
    • 제13권1호
    • /
    • pp.169-175
    • /
    • 2011
  • 콘크리트에서 강도는 콘크리트의 물리적 특성을 평가할 수 있는 중요한 인자 중 하나이며 콘크리트에 가장 많은 부피를 차지하는 것이 골재이다. 또한 시멘트는 콘크리트 만드는 결합재로서 이 역시 강도와 매우 밀접한 관계가 있다. 이러한 골재와 시멘트의 특성이 콘크리트 압축강도와 전단파 속도의 상관관계에 미치는 영향을 파악하고자 굵은 골재 최대치수와 시멘트 종류별로 실험을 실시하였다. 시멘트는 1종 시멘트와 초속경 시멘트를 사용했고, 골재는 서로 다른 지역의 3가지 골재를 사용하였다. 골재의 입도는 굵은 골재 최대치수 19mm와 13mm의 단입도 골재를 사용하여 동일 배합시 압축강도와 전단파 속도의 상관관계를 살펴보았다. 또한 골재의 특성을 정량화 하고자 LA마모시험을 실시하였다. 그 결과 압축강도와 전단파 속도의 상관관계는 시멘트 종류에 따라 달랐으나, 골재의 종류, 입도 및 마모감량에 관계없이 일정한 상관성을 보이는 것으로 나타났다.

방조제 해측피복석의 마모특성분석 -새만금방조제를 중심으로- (Abrasion Characteristics of Seaside Armor Stones of Seadike -Focused on Saemangeum Seadike-)

  • 고남영;김학원;최진규;장태일;손재권
    • 한국농공학회논문집
    • /
    • 제57권5호
    • /
    • pp.19-27
    • /
    • 2015
  • The results of Saemangeum seadike field inspection and material testing of armor stones in order to analyze causes of abrasion according to material characteristics of seaside armor stones in Saemangeum seadike are in the following: 1. The armor stones in Saemangeum seadike have been constructed by using internal stones (mainly, sinsi stones) and external stones, which had less strength (77.3 %) and more abrasion rate (133.3 %) compared with sinsi stones. 2. The compressive strength and abrasion rate were compared between ordinary wave section and high wave section for the purpose of analyzing the influence of waves. In compressive strength, sinsi stones were 4.0 % stronger and external stones were 0.6 % stronger in ordinary wave section than those of high wave section in average. In the case of abrasion rate, sinsi stones were 3.0 % higher and external stones were 8.2 % higher in the high wave section than those in the ordinary section. 3. The result of comparing compressive strength according to a zone is that the compressive strength in the Intertidal area was less strong in most of the zones. 4. Considering that deviated stones are moving around over the surface of armor stones in situ, it is important to compare material characteristics. So the comparison test about this factor showed that deviated sinsi stones were stronger than armor stones in situ in terms of compressive strength and resistance to abrasion. Based on these results, abraded armor stones may have resulted from their durability. Therefore it is assumed that armor stones are likely to be abraded when deviated stones which are more durable are moving around over armor stones which are less durable.