• Title/Summary/Keyword: Compression load

Search Result 1,352, Processing Time 0.029 seconds

FE modeling of Partially Steel-Jacketed (PSJ) RC columns using CDP model

  • Ferrotto, Marco F.;Cavaleri, Liborio;Trapani, Fabio Di
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.143-152
    • /
    • 2018
  • This paper deepens the finite element modeling (FEM) method to reproduce the compressive behavior of partially steel-jacketed (PSJ) RC columns by means of the Concrete Damaged Plasticity (CDP) Model available in ABAQUS software. Although the efficiency of the CDP model is widely proven for reinforced concrete columns at low confining pressure, when the confinement level becomes high the standard plasticity parameters may not be suitable to obtain reliable results. This paper deals with these limitations and presents an analytically based strategy to fix the parameters of the Concrete Damaged Plasticity (CDP) model. Focusing on a realistic prediction of load-bearing capacity of PSJ RC columns subjected to monotonic compressive loads, a new strain hardening/softening function is developed for confined concrete coupled with the evaluation of the dilation angle including effects of confinement. Moreover, a simplified efficient modeling approach is proposed to take into account also the response of the steel angle in compression. The prediction accuracy from the current model is compared with that of existing experimental data obtained from a wide range of mechanical confinement ratio.

Seismic upgrading of reinforced concrete frames with steel plate shear walls

  • Korkmaz, Hasan H.;Ecemis, Ali S.
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.473-484
    • /
    • 2017
  • The objective of this paper is to report on a study of the use of unstiffened thin steel plate shear walls (SPSWs) for the seismic performance improvement of reinforced concrete frames with deficient lateral rigidity. The behaviour of reinforced concrete frames during seismic activities was rehabilitated with an alternative and occupant-friendly retrofitting scheme. The study involved tests of eight 1/3 scale, one bay, two storey test specimens under cyclic quasi-static lateral loadings. The first specimen, tested in previous test program, was a reference specimen, and in seven other specimens, steel infill plates were used to replace the conventional infill brick or the concrete panels. The identification of the load-deformation characteristics, the determination of the level of improvement in the overall strength, and the elastic post-buckling stiffness were the main issues investigated during the quasi-static test program. With the introduction of the SPSWs, it was observed that the strength, stiffness and energy absorption capacities were significantly improved. It was also observed that the experimental hysteresis curves were stable, and the composite systems showed excellent energy dissipation capacities due to the formation of a diagonal tension field action along with a diagonal compression buckling of the infill plates.

Experimental study of the behavior of composite timber columns confined with hollow rectangular steel sections under compression

  • Razavian, Leila;Naghipour, Morteza;Shariati, Mahdi;Safa, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.145-156
    • /
    • 2020
  • There are separate merits and demerits to wood and steel. The combination of wood and steel as a compound section is able to improve the properties of both and ultimately increase their final bearing capacity. The composite cross-section made of steel and wood has higher hardness while showing more ductility and the local buckling of steel is delayed or completely prevented. The purpose of this study is to investigate the behavior of composite columns enclosed in wooden logs and the hollow sections of steel that will be examined in a laboratory environment under the axial load to determine the final bearing capacity and sample deformation. In terms of methodology, steel sheet and carbon fiber reinforced polymer sheet (FRP) are tested to construct hollow rectangular sections and reinforce timber. Besides, the method of connecting hollow sections and timber including glue and screw has been also investigated. As a result, timber lumber enclosed with carbon fiber-reinforced polymer sheets in which fibers are horizontally located at 90° are more resistant with better ductility.

Evaluation of Dynamic Properties of Trackbed Foundation Soil Using Mid-size Resonant Column Test

  • Lim, Yujin;Nguyen, Tien Hue;Lee, Seong Hyeok;Lee, Jin-Wook
    • International Journal of Railway
    • /
    • v.6 no.3
    • /
    • pp.112-119
    • /
    • 2013
  • A mid-size RC test apparatus (MRCA) equipped with a program is developed that can test samples up to D=10 cm diameter and H=20 cm height which are larger than usual samples used in practice. Using the developed RC test apparatus, two types of crushed trackbed foundation materials were tested in order to get the shear modulus reduction curves of the materials with changing of shear strain levels. For comparison purpose, large repetitive triaxial compression tests (LRT) with samples of height H=60cm and diameter D=30 cm were performed also. Resilient modulus obtained from the LRT was converted to shear modulus by considering elastic theory and strain level conversion and were compared to shear modulus values from the MRCA. It is found from this study that the MRCA can be used to test the trackbed foundation materials properly. It is found also that strain levels of $E_{v2}$ mostly used in the field should be verified considering the shear modulus reduction curves and proper values of $E_{v2}$ of trackbed foundation must be used considering the strain level verified.

Axial behavior of RC columns strengthened with SCC filled square steel tubes

  • Lu, Yi-Yan;Liang, Hong-Jun;Li, Shan;Li, Na
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.623-639
    • /
    • 2015
  • Self-compacting Concrete (SCC) Filled Square steel Tubes (SCFST) was used to strengthen square RC columns. To establish the efficiency of this strengthening method, 17 columns were tested under axial compression loading including 3 RC columns without any strengthening (WRC), 1 RC column strengthened with concrete jacket (CRC), 13 RC columns strengthened with self-compacting concrete filled square steel tubes (SRC). The experimental results showed that the use of SCFST is interesting since the ductility and the bearing capacity of the RC columns are greatly improved. The improvement ratio is significantly affected by the nominal wall thickness of steel tubes (t), the strength grade of strengthening concrete (C), and the length-to-width ratio (L / B) of the specimens. In order to quantitatively analyze the effect of these test parameters on axial loading behavior of the SRC columns, three performance indices, enhancement ratio (ER), ductility index (DI), and confinement ratio (CR), were used. The strength of the SRC columns obtained from the experiments was then employed to verify the proposed mode referring to the relevant codes. It was found that codes DBJ13-51 could relatively predict the strength of the SRC columns accurately, and codes AIJ and BS5400 were relatively conservative.

Software for adaptable eccentric analysis of confined concrete circular columns

  • Rasheed, Hayder A.;El-Fattah, Ahmed M. Abd;Esmaeily, Asad;Jones, John P.;Hurst, Kenneth F.
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.331-347
    • /
    • 2012
  • This paper describes the varying material model, the analysis method and the software development for reinforced concrete circular columns confined by spiral or hoop transverse steel reinforcement and subjected to eccentric loading. The widely used Mander model of concentric loading is adapted here to eccentric loading by developing an auto-adjustable stress-strain curve based on the eccentricity of the axial load or the size of the compression zone to generate more accurate interaction diagrams. The prediction of the ultimate unconfined capacity is straight forward. On the other hand, the prediction of the actual ultimate capacity of confined concrete columns requires specialized nonlinear analysis. This nonlinear procedure is programmed using C-Sharp to build efficient software that can be used for design, analysis, extreme event evaluation and forensic engineering. The software is equipped with an elegant graphics interface that assimilates input data, detail drawings, capacity diagrams and demand point mapping in a single sheet. Options for preliminary design, section and reinforcement selection are seamlessly integrated as well. Improvements to KDOT Bridge Design Manual using this software with reference to AASHTO LRFD are made.

Friction Angle on the Surface of Vertical Ground Anchor in Sand (모래지반내의 연직 지반앵커 표면의 마찰각)

  • 임종철
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.99-110
    • /
    • 1995
  • In this study, friction angles on the surface of vertical rigid ground anchor in normally consolidated dry sand were measured by model pullout tests in laboratory. Friction angles were obtained from the normal and shear stresses measured along depth of the anchor stir face by attaching several 2-dimensional load cells. Model tests were conducted under the plane strain state and axial symmetric state. From the results of tests, it was concluded that the maximum friction angle on the anchor surface coincides nearly with the maximum angle of stress obliquity on the plane of zero-extension direction obtained by plane strain compression test. This result was made with regard to the strength anisotropy and stress dependency of sand. It showed that when angle of shear resistance of the sand is applied to the friction angle of the anchor surface, the design capacity could be less than the applied force, thus making the anchor unsafe.

  • PDF

Optimization of Coil Design for Helical Magneto-Cumulative Generators (나선형 자장압축발전기의 코일설계 최적화)

  • 국정현;이흥호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.8
    • /
    • pp.477-487
    • /
    • 2004
  • Helical magneto-cumulative generators(MCGs) are devices which convert explosive energy into electromagnetic energy. The electromagnetic energy supplied from an external circuit is amplified by an explosively driven metal conductor mounted at the center of a helical coil compressing magnetic flux between the conductor and the coil. To optimize the coil design, output properties of small-size helical MCGs were measured while varying design parameters; the number of coil sections, length of the sections, pitch in the sections, and type of copper wire. Dimensions of the coil were kept constant, 50 mm in diameter and 200 mm in length. The coil was fabricated by using enamel-coated copper wire of 1 mm in diameter. The highest energy amplification ratio and figure of merit were 52.5 and 0.81, respectively. from an helical MCG with initial inductance of 63.7 $\mu$H at initial energy of 0.152 kJ Based on the experimental and calculated results, empirical formulas capable of optimizing coil designs were derived. By using these formulas, pitch in each coil section can be obtained at an arbitrary inductive load for high energy amplification ratio and figure of merit.

Multi-scale Progressive Failure Analysis of Triaxially Braided Textile Composites

  • Geleta, Tsinuel N.;Woo, Kyeongsik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.436-449
    • /
    • 2017
  • In this paper, the damage and failure behavior of triaxially braided textile composites was studied using progressive failure analysis. The analysis was performed at both micro and meso-scales through iterative cycles. Stress based failure criteria were used to define the failure states at both micro- and meso-scale models. The stress-strain curve under uniaxial tensile loading was drawn based on the load-displacement curve from the progressive failure analysis and compared to those by test and computational results from reference for verification. Then, the detailed failure initiation and propagation was studied using the verified model for both tensile and compression loading cases. The failure modes of each part of the model were assessed at different stages of failure. Effect of ply stacking and number of unit cells considered were then investigated using the resulting stress-strain curves and damage patterns. Finally, the effect of matrix plasticity was examined for the compressive failure behavior of the same model using elastic, elastic - perfectly plastic and multi-linear elastic-plastic matrix properties.

Mechanical Properties of Barley Starch Gels (보리전분젤의 역학적 성질)

  • Lee, Shin-Young;Kim, Kwang-Joong;Lee, Sang-Kyu
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.215-220
    • /
    • 1986
  • Mechanical properties of 9-30% starch gels from naked and covered barley were investigated with rheometer or rotation viscosimeter. The compression-penetration curves of 20 and 30% gels were characterized by deformations containing elastic, plastic and fracture regions under the load of 0-2kg. The compressive stress relaxation test showed that the viscoelastic properties of 20% gels may be represented by four element Maxwell model consisting of two Maxwell element in parallel. Also, stress-decay under the steady shear of 9% covered starch gel was able to be interpreted by linear viscoelastic model and stress-decay process was suggested to be effective to investigate the effect of temperature or additives on gel structure.

  • PDF