• Title/Summary/Keyword: Compression load

Search Result 1,352, Processing Time 0.023 seconds

A Study on Characteristics of Strength Increase and Bearing Capacity in Dredged and Reclaimed Soil due to Desiccation Shrinkage (준설토의 건조수축에 의한 강도증가 특성과 지지력에 관한 연구)

  • Yoo, Nam-Jae;Lee, Jong-Ho;Lee, Myung-Woog;Kim, Hyun-Joo
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.101-111
    • /
    • 2000
  • This research is results of experimental and numerical works on characteristic of strength increase and bearing capacity in dredged and reclaimed soil due to desiccation shrinkage. For a soil sampled from southern coastal area in Korea, basic soil property tests and standard consolidation test with falling head permeability tests were carried out to obtain consolidational characteristics of soil. Double cone penetration test, laboratory vane test and unconfined compression test were also performed to investigate the change of shear strength with degree of desiccation. Model tests were performed in 1G environment and 30G level artificially accelerated condition by using the centrifuge model test facilities to investigate the bearing capacity of desiccated ground. Test results were analyzed by using the theoretical and load-settlement characteristics method proposed by Meyehof & Hanna(1978). On the other hands, the numerical technique, using the finite strain consolidation theory considering the effect of desiccation was used to estimate the appropriate time of using heavy construction equipments in field with respect to strength increase due to desiccation.

  • PDF

Analytical and numerical studies on hollow core slabs strengthened with hybrid FRP and overlay techniques

  • Kankeri, Pradeep;Prakash, S. Suriya;Pachalla, Sameer Kumar Sarma
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.535-546
    • /
    • 2018
  • The objective of this study is to understand the behaviour of hollow core slabs strengthened with FRP and hybrid techniques through numerical and analytical studies. Different strengthening techniques considered in this study are (i) External Bonding (EB) of Carbon Fiber Reinforced Polymer (CFRP) laminates, (ii) Near Surface Mounting (NSM) of CFRP laminates, (iii) Bonded Overlay (BO) using concrete layer, and (iv) hybrid strengthening which is a combination of bonded overlay and NSM or EB. In the numerical studies, three-dimensional Finite Element (FE) models of hollow core slabs were developed considering material and geometrical nonlinearities, and a phased nonlinear analysis was carried out. The analytical calculations were carried out using Response-2000 program which is based on Modified Compression Field Theory (MCFT). Both the numerical and analytical models predicted the behaviour in agreement with experimental results. Parametric studies indicated that increase in the bonded overlay thickness increases the peak load capacity without reducing the displacement ductility. The increase in FRP strengthening ratio increased the capacity but reduced the displacement ductility. The hybrid strengthening technique was found to increase the capacity of the hollow core slabs by more than 100% without compromise in ductility when compared to their individual strengthening schemes.

Investigation on the seismic performance of T-shaped column joints

  • Chen, Changhong;Gong, He;Yao, Yao;Huang, Ying;Keer, Leon M.
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.335-344
    • /
    • 2018
  • More and more special-shaped structural systems have been widely used in various industrial and civil buildings in order to satisfy the new structural system and the increasing demand for architectural beauty. With the popularity of the special-shaped structure system, its seismic performance and damage form have also attracted extensive attention. In the current research, an experimental analysis of six groups of (2/3 scale) T-shaped column joints was conducted to investigate the seismic performance of T-shaped column joints. Effects of the beam cross section, transverse stirrup ratio and axial compression ratio on bearing capacity and energy dissipation capacity of column joints were obtained. The crack pattern of T-shaped column joints under low cyclic load was presented and showed a reversed "K" mode. According to the crack configurations, a tensile-shear failure model to determine the shear bearing capacity and crack propagation mechanisms is developed.

Stabilized marine and desert sands with deep mixing of cement and sodium bentonite

  • Saberian, Mohammad;Moradi, Mojtaba;Vali, Ramin;Li, Jie
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.553-562
    • /
    • 2018
  • Road construction is becoming increasingly important in marine and desert areas due to population growth and economic development. However, the load carrying capacity of pavement is of gear concern to design and geotechnical engineers because of the poor engineering properties of the soils in these areas. Therefore, stabilization of the soils is regarded as an important issue. Besides, due to the fuels combustion and carbonate decomposition, cement industry generates around 5% of global $CO_2$ emission. Thus, using bentonite as a natural pozzolan in soil stabilization is more eco-friendly than using cement. The aim of this research is to experimentally study of the stabilized marine and desert sands using deep mixing method by ordinary Portland cement and sodium bentonite. Different partial percentages of cement along with different weight percentages of sodium bentonite were added to the sands. Unconfined compression test (UCS), Energy Dispersive X-ray (EDX), and Scanning Electron Microscope (SEM) were conducted on the specimens. Moreover, a mathematical model was developed for predicting the strength of the treated soils.

A Study on Reinforcing Effect of Multi-Bar Spring Nailing (다철근 스프링 네일링 공법의 보강효과 검토에 관한 연구)

  • Lee, Choong-Ho;Jung, Young-Jin;Kim, Dong-Sik;Chae, Young-Su
    • Journal of the Society of Disaster Information
    • /
    • v.3 no.2
    • /
    • pp.147-169
    • /
    • 2007
  • This study investigates the reinforcing effects of the Multi-bar Spring nails with respect to the conventional Soil-nails in artificial slopes. Based on wide experience related to design and construction, soil nails have been widely applied to reinforce slope in the world. Multi-bar spring nails are one of the improved soil nailing methods. These method maximizes bending, shearing, pull-out resistance for those multi-nails, not unit nail, that are inserted in the borehole using special spacer at regular intervals. In addition, because cutting plane is confined effect resulting from a pressured plate at the end of the nails with compression spring equipment, slope stability is secured using MS-nailing method. Analyzing bending, pull-out, shearing condition of MS-nail, it was examined throughly elastic region, load transfer capacity, reinforcing effect on cutting plate of MS-nails. In addition, Pilot and laboratory tests, numerical analysis were carried out to verify the superiority of MS-nailing method. In case, MS nailing method is applied to reinforce artificial slope, it was analyzed that bending, pull-out, shearing resistance was increased more than existing nailing method was applied. In this study, it was shown that surface failure was more or less prevented using MS-nailing method, confining effect on cutting plane using spring stuck to flexible equipment.

  • PDF

The Behavior of Shallow Foundation under Eccentric Loads by Centrifuge Model Experiment (원심모형시험에 의한 편심하중을 받는 얕은기초의 거동)

  • Yoo, Nam-Jae;Lee, Myung-Woog;Park, Byung-Soo;Jeong, Gil-Soo
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.229-240
    • /
    • 2002
  • This paper is an experimental and numerical work of Investigating the bearing capacity of shallow foundation of rubble mound under eccentric loads. Parametric centrifuge model tests at the 50g level environments with the model footings in the form of strip footing were performed by changing the loading location of model footing, relative density and materials for ground foundation. For the model ground, crushed rock sampled from a rocky mountain was prepared with a grain size distribution of having an identical coefficient of uniformity to the field condition. Model ground was also prepared with relative densities of 50 % and 80 %. For loading condition, model tests with and without eccentric load were carned out to investigate the effect of eccentric loads and a numerical analysis with the commertially available software of FLAC was performed. For numerical estimation with FLAC, the hyperbolic model of a nonlinear elastic constitutive relationship was used to simulate the stress-stram constitutive relationship of model ground and a series of triaxial compression test were carried out to find the parameters for this model Test results were analyzed and compared with Meyerhof method (1963), effective area method based on the limit equilibrium method, and a numerical analysis with FLAC.

  • PDF

Determination of pressure-Dependent Yield . Criterion for Polymeric Foams (폴리머 폼 재료의 정수압 종속 항복조건 결정에 관한 연구)

  • 김영민;강신일
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.69-74
    • /
    • 2002
  • In addition to lightweight and moldable characteristics, polymeric foams possess an excellent energy absorbing capability that can be utilize for a wide range of commercial applications, especially in the crashworthiness of the automobiles. The purpose of the present study is to develop experimental methodology to characterize the pressure dependent yield behavior of the energy absorbing polymeric foams. For the compression test in a triaxial stress sate, a specially designed device was placed in a hydraulic press to produce and control oil pressure. For the test material, the polyurethane foams of two different densities were used. The displacement of the specimen, the load subjected to the specimen, and oil pressure applied to the specimen were measured and controlled. Stress strain curves and yield stresses for the four different oil pressure were obtained. It was found from the present experiments that the polyurethane foams exhibited significant increases in yield stress with applied pressure or mean normal stress. Based on this observation, a yield criteria which included the effect of the stress invariant were established for the polymeric foams. The obtained experimental constants which constituted the pressure-dependent yield criterion were verified.

Mechanical Testing and Nonlinear Material Properties for Finite Element Analysis of Rubber Components (고무부품의 유한요소해석을 위한 재료시험 및 비선형 재료물성에 관한 연구)

  • Kim, Wan-Doo;Kim, Wan-Soo;Kim, Dong-Jin;Woo, Chang-Soo;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.848-859
    • /
    • 2004
  • Mechanical testing methods to determine the material constants for large deformation nonlinear finite element analysis were demonstrated for natural rubber. Uniaxial tension, uniaxial compression, equi-biaxial tension and pure shear tests of rubber specimens are performed to achieve the stress-strain curves. The stress-strain curves are obtained after between 5 and 10 cycles to consider the Mullins effect. Mooney and Ogden strain-energy density functions, which are typical form of the hyperelastic material, are determined and compared with each other. The material constants using only uniaxial tension data are about 20% higher than those obtained by any other test data set. The experimental equations of shear elastic modulus on the hardness and maximum strain are presented using multiple regression method. Large deformation finite element analysis of automotive transmission mount using different material constants is performed and the load-displacement curves are compared with experiments. The selection of material constant in large deformation finite element analysis depend on the strain level of component in service.

Cyclic Stress-strain Hardening Model of AC4C-T6 Alloy at Cryogenic Temperature (극저온 상태에서 AC4C-T6 의 가공 경화 모델 결정에 관한 연구)

  • Lee, Jae-Beom;Kim, Kyung-Su;Lee, Jang-Hyun;Yoo, Mi-Ji;Choung, Joon-Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.498-509
    • /
    • 2009
  • Present study is concerned with the simulation of plasticity models for the cyclic stressstrain behavior of aluminum alloy AC4C-T6 that can be used for primary materials of LNG cargo pump. Material model of cyclic hardening and plasticity for aluminum alloy AC4C-T6 was investigated through experiments and numerical simulations. Monotonic tensile and cyclic tension-compression test under symmetric load cycles was performed at both room temperature and cryogenic temperature of $-165^{\circ}C$. Based on the experimental data plastic hardening models were evaluated for isotropic/kinematic/combined hardening. FEA (Finite Element Analysis) models which describe the cyclic stress-strain relationship were evaluated for the simulation of plasticity. An appropriate hardening model is proposed comparing the results of FEA with those of experiments.

Size Effect for Flexural Compressive Strength of Concrete (콘크리트의 휨 압축강도의 크기효과)

  • Kim, Jin-Keun;Yi, Seong-Tae;Yang, Eun-Ik
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.157-165
    • /
    • 1999
  • When the ultimate strength of a concrete flexural member is evaluated, the effect of member size is usually not considered. For various types of loading, however, the strength always decreases with the increment of member size. In this paper the size effect of a flexural compression member is investigated by experiments. For this purpose, a series of C-shaped specimens subjected to axial compressive load and bending moment was tested using three different sizes of specimens with a compressive strength of 528 kg/$cm^2$. According to test results the size effect on flexural compressive strength was apparent, and more distinct than that for uniaxial compressive strength of cylinders. Finally a model equation was derived using regression analyses with experimental data.