• Title/Summary/Keyword: Compression corner

Search Result 40, Processing Time 0.019 seconds

Prediction of Supersonic Flow over Compression Corner using EDISON (EDISON을 이용한 Compression Corner에서의 Supersonic Flow의 예측)

  • Lee, Yun-U;Jeon, Sang-Eon;Park, Su-Hyeong
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.409-414
    • /
    • 2013
  • 본 연구는 2차원 Compression Corner에서의 초음속 유동의 특성에 관한 수치적 해석을 목적으로 한다. 고속 유동에 관한 연구에 따르면 Compression corner에서 Peak pressure와 Recirculation region이 Flow velocity와 Corner angle에 의하여 크게 영향을 받는 다는 것을 알게 되었다. 지정된 Mach number에서 Corner angle을 $8^{\circ}{\sim}24^{\circ}$로 변화시켜 가면서 Supersonic flow에서 유동해석을 하였다. EDISON을 사용한 Compression Corner 유동해석 결과를 건국대학교 In-house code 'k-flow'를 이용한 결과, 실험 결과와 비교분석하였다.

  • PDF

Post-Processing for Reducing Corner Outliers (Corner outlier 제거를 위한 후처리 기법)

  • 홍윤표;전병우
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.11-14
    • /
    • 2003
  • In block-based lossy video compression, severe quantization causes discontinuities along block boundaries so that annoying blocking artifacts are visible in decoded video imases. These blocking artifacts significantly decrease the subjective image quality. In order to reduce the blocking artifacts in decoded images, many algorithms have been proposed However studies on so called, corner outliers, have been very limited. Corner outliers make image edges look disconnected from those of neighboring blocks at cross block boundary. In order to solve this problem, we propose a corner outlier detection and compensation algorithm as post-processing in spatial domain The experiment results show that the proposed method provides much improved subjective image quality.

  • PDF

Effect of Reynolds number on compressible convex-corner flows

  • Chung, Kung-Ming;Chang, Po-Hsiung;Chang, Keh-Chin
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.443-454
    • /
    • 2014
  • An experimental study was conducted to investigate the effect of Reynolds number on compressible convex-corner flows, which correspond to an upper surface of a deflected flap of an aircraft wing. The flow is naturally developed along a flat plate with two different lengths, resulting in different incoming boundary layer thicknesses or Reynolds numbers. It is found that boundary layer Reynolds number, ranging from $8.04{\times}10^4$ to $1.63{\times}10^5$, has a minor influence on flow expansion and compression near the corner apex in the transonic flow regime, but not for the subsonic expansion flow. For shock-induced separated flow, higher peak pressure fluctuations are observed at smaller Reynolds number, corresponding to the excursion phenomena and the shorter region of shock-induced boundary layer separation. An explicit correlation of separation length with deflection angle is also presented.

Optimization of L-shaped Corner Dowel Joint in Modified Poplar using Finite Element Analysis with Taguchi Method

  • Ke, Qing;Zhang, Fan;Zhang, Yachi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.204-217
    • /
    • 2016
  • Modified poplar has emerged as a potential raw material for furniture production. Lack of specific modified poplar strength information; however, restricts applications in the furniture industry especially as related to strength in corner-joints. Optimization of strength in L-shaped corner dowel modified poplar joints under compression loads utilizing finite element analysis (FEA) by Taguchi method with the focus of this study. Four experiment factors (i.e., Structure Style, Tenon Length, Tenon Diameter, and Tenon Gap), each at three levels, were conducted by adopting a $L_9-3^4$ Taguchi orthodoxy array (OA) to determine the optimal combination of factors and levels for the von Mises stress utilizing ANSYS software. Results of Signal-to-Noise ratio (S/N) analysis and the analysis of variance (ANOVA) revealed the optimal L-shaped corner dowel joint in modified poplar is $45^{\circ}$ Bevel Butt in structure style, 24 mm in tenon length, 6 mm in tenon diameter, and 20 mm in tenon gap. Tenon length and tenon gap are determined to be significant design factors for affecting von Mises Stress. Confirmation tests with optimal levels and experimental test indicated the predicted optimal condition is comparable to the actual experimental optimal condition.

A numerical study of the eccentricity effect of the intake valve on the in-cylinder flow field (실린더 내부 유동장에 대한 흡입 밸브의 편심 효과에 관한 수치적 연구)

  • 양희천;최영기;고상근;허선무
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.39-49
    • /
    • 1992
  • Three dimensional numerical calculation carried out to investigate the eccentricity effect of intake valve on the in-cylinder flow fields for the intake stroke and the compression stroke. During the intake stroke, a corner vortex in the vicinity of the valve exit interacted strongly with a toroidal vortex in the case of axisymmetric valve. But a weak interaction between the corner vortex and the toroidal vortex occurred due to the eccentricity of the valve in the narrow region between valve and cylinder wall in the case of offset valve. During the compression stroke, it was found that a solid body rotation was maintained in the radial-circumferential plane in the case of axisymmetric valve. But a weak secondary vortex was formed in the radial-circumferntial plane in the case of offset valve, because of the interaction between swirl flows and inward flows towards cylinder axis. The calculated turbulence intensity presented a similar trend with the experiental results but, in spite of using the modified k-.epsilon. model, it was found that the qualitative difference between the numerical results and experimental results was large in the region where the velocity gradient is substantial.

  • PDF

Simulation of Growth Behavior of Sawtoothed Interface by the compression (톱니형상면의 압축에 의한 성장거동 시뮬레이션)

  • 정태훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.90-94
    • /
    • 2002
  • In this paper, Compression in the case where dissimilar blocks are twinned variously are carried out in the condition of lubricated interface. The degree of growth is experimentally investigated. Moreover, numerical simulations are carried out by the elastic-plastic FEM for the case of the dissimilar blocks with the initial sawtooth angle of 60。. The dissimilar blocks are twinned, larger difference between material properties leads smaller growth, and the degreased interface leads smaller growth than that in the lubricated one. Furthermore, by the simulation of compression where dissimilar blocks are twinned, it is confirmed that the tendency of the general deformation pattern is very similar to the experiment.

  • PDF

Quadrilateral RAC filled FRP tubes: Compressive behavior, design and finite element models

  • Ming-Xiang Xiong;Xuchi Chen;Fengming Ren
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.485-498
    • /
    • 2023
  • The need for carbon neutrality in the world strives the construction industry to reduce the use of construction materials. Aiming to this, recycled aggregate concrete (RAC) could be used as it reduces the carbon dioxide emissions. Currently, RAC is mainly used in non-structural members of civil constructions, seldom used in structural members. To broaden its structural use, a new type of composite column, i.e., the square and rectangular RAC filled FRP tubes (CFFTs), has been concerned in this study. The investigation on their axial compressive behavior through physical test and numerical analysis demonstrated that the load-carrying capacity of such column is reduced with the increase of replacement ratio of recycled aggregate and aspect ratio of section but can be improved by the increase of FRP confining stiffness and corner radius, said capacity can be equivalent to their steel reinforced concrete counterparts. At failure, the hoop strain at corner of tube is unexpectedly smaller than that at flat side of the tube although the FRP tube ruptured at its corner first, revealing a premature failure. Besides, a design-oriented stress-strain model of concrete and an analysis-oriented finite element model are proposed to predict the load-strain response of square and rectangular CFFT columns, which facilitates the engineering use of RAC in load-carrying structural members.

Failure Analysis of Connecting Rod at Small End (커넥팅로드 소단부 파단의 해석)

  • 민동균;전병희;김낙수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.382-390
    • /
    • 1995
  • Failure of connecting rod in automotive engine may cause catastrophic situation. The corner radius at small end has an effect on stress raising. To investigate the stress distribution in connecting rod during operation, the finite element analysis was used by giving possible maximum tension and compression. Excessive sizing after forging connecting rod may result in the tensile residual stress which lower the fatigue life and cause premature failures. It was shown that when the sizing amount is too large, the location of high tensile residual stress coincide with that of high stress amplitude during operation through the elastic-plastic finite element analysis. The endurance limit moves down due to the surface finish and decarburization, which combines with the movement of resultant stress points to dangerous range. It was concluded that the precise control of sizing and enough corner radius are necessary to a reliability of connecting rod.

A Study on the Contact Stress Analysis for X-ring (X-ring의 접촉 응력 해석에 관한 연구)

  • Lee, Hyun-Seung;Lee, Young-Shin;Lee, Jung-Hyun;Chun, Byong-Sun;Baek, Joon-Ho;Kim, Suk-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.733-739
    • /
    • 2008
  • The X-ring is a elastomer with X-shaped cross-section used as a mechanical seal or gasket. Such a X-ring was equipped in a groove and compressed between two or more parts, acts as a seal on the interface. This study aims to detect contact stress and deformed shape of a X-shaped ring shell under various compressive contact conditions. A contact stress analysis was carried out by finite element analysis. The effect of compression rates and thickness design variable was analyzed. X-ring kept up the double seal until a compression rate of 20%. The maximum stresses of the X-ring was occurred at the top and bottom corner. The maximum contact stress of X-ring was rapidly increased according with the compression rate. The X-rings with thickness design variable from 1.3 mm to 1.5 mm had comparative low stress levels.

An Experimental Study on Sink Mark Formation in Compression Molded SMC Parts with Rib (리브를 가진 일체형 SMC 압축성형재의 Sink Mark 형성에 관한 실험적 연구)

  • 정진호;임용택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1490-1500
    • /
    • 1995
  • Compression molding of SMC (Sheet Molding Compound) in a thin plaque with substructures like a rib is involved with the formation of surface defect along the centerline over the rib area called by sink mark depending on process parameters. The surface quality of the external panels in automotive manufacturing is so critical that this kind of defect should be eliminated during manufacturing stages. The effect of process parameters on sink mark formation and the distribution of chopped fiberglasses in the compression molded thin plaque with a rib was experimentally investigated in the present study. In order to estimate the effect of the molding parameters such as molding temperature, mold closing speed, depth of the rib, corner radius of the rib, and final molded part thickness of flat portion on the depth of sink mark and the distribution of fiberglasses in the molded SMC part with the rib under the present experimental conditions, the molding parameters used in experiments were non-dimensionalized equation for predicting the depth of sink mark was determined through dimensional analysis based on the experimental data. The orientation and distribution of fiberglasses and fillers which directly affect the formation and depth of sink mark were investigated by taking the photographs of the cross-sectional area of the molded specimen using scanning electron microscope. The experimental results proposed from this investigation are useful in understanding the formation of sink mark and predicting the depth of sink mark in compression molding of SMC with substructures.