• Title/Summary/Keyword: Compression capacity

Search Result 803, Processing Time 0.021 seconds

Buckling performance of pultruded glass fiber reinforced polymer profiles infilled with waste steel fiber reinforced concrete under axial compression

  • Emrah, Madenci;Sabry, Fayed;Walid, Mansour;Yasin Onuralp, Ozkilic
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.653-663
    • /
    • 2022
  • This study reports the results of a series of tests of pultruded glass fiber reinforced polymer (P-GFRP) box section composite profile columns, geometrically similar with/without concrete core, containing 0-1-2-3% steel fiber, with different lengths. The recycled steel wires were obtained from waste tyres. The effects of steel fiber ratio on the collapse and size effect of concrete filled P-GFRP columns under axial pressure were investigated experimentally and analytically. A total of 36 columns were tested under compression. The presence of pultruded profile and steel wire ratio were selected as the primary variable. The capacity of pultruded profiles with infilled concrete are averagely 9.3 times higher than the capacity of concrete without pultruded profile. The capacity of pultruded profiles with infilled concrete are averagely 34% higher than that of the pultruded profiles without infilled concrete. The effects of steel wire ratio are more pronounced in slender columns which exhibit buckling behavior. Moreover, the proposed analytical approach to calculate the capacity of P-GFRP columns successfully predicted the experimental findings in terms of both pure axial and buckling capacity.

Compression of time-varying volume data using Daubechies D4 filter (Daubechies D4 필터를 사용한 시간가변(time-varying) 볼륨 데이터의 압축)

  • Hur, Young-Ju;Lee, Joong-Youn;Koo, Gee-Bum
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.982-987
    • /
    • 2007
  • The necessity of data compression scheme for volume data has been increased because of the increase of data capacity and the amount of network uses. Now we have various kinds of compression schemes, and we can choose one of them depending on the data types, application fields, the preferences, etc. However, the capacity of data which is produced by application scientists has been excessively increased, and the format of most scientific data is 3D volume. For 2D image or 3D moving pictures, many kinds of standards are established and widely used, but for 3D volume data, specially time-varying volume data, it is very difficult to find any applicable compression schemes. In this paper, we present a compression scheme for encoding time-varying volume data. This scheme is aimed to encoding time-varying volume data for visualization. This scheme uses MPEG's I- and P-frame concept for raising compression ratio. Also, it transforms volume data using Daubechies D4 filter before encoding, so that the image quality is better than other wavelet-based compression schemes. This encoding scheme encodes time-varying volume data composed of single precision floating-point data. In addition, this scheme provides the random reconstruction accessibility for an unit, and can be used for compressing large time-varying volume data using correlation between frames while preserving image qualities.

  • PDF

Numerical Study About Compression Effect of Porous Electrodes on the Performance of Redox Flow Batteries (다공성 전극의 압축률이 레독스흐름전지의 성능에 미치는 영향에 대한 수치해석적 연구)

  • Jeong, Daein;Jung, Seunghun
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.69-79
    • /
    • 2017
  • When designing a redox flow battery system, compression of battery stack is required to prevent leakage of electrolyte and to reduce contact resistance between cell components. In addition, stack compression leads to deformation of the porous carbon electrode, which results in lower porosity and smaller cross-sectional area for electrolyte flow. In this paper, we investigate the effects of electrode compression on the cell performance by applying multi-dimensional, transient model of all-vanadium redox flow battery (VRFB). Simulation result reveals that large compression leads to greater pressure drop throughout the electrodes, which requires large pumping power to circulate electrolyte while lowered ohmic resistance results in better power capability of the battery. Also, cell compression results in imbalance between anolyte and catholyte and convective crossover of vanadium ions through the separator due to large pressure difference between negative and positive electrodes. Although it is predicted that the battery power is quickly improved due to the reduced ohmic resistance, the capacity decay of the battery is accelerated in the long term operation when the battery cell is compressed. Therefore, it is important to optimize the battery performance by taking trade-off between power and capacity when designing VRFB system.

Differences in Rectus Femoris Activation Among Skaters Wearing Fabric Speed Skating Suits with Different Levels of Compression

  • Moon, Young-Jin;Song, Joo-Ho;Hwang, Jinny
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.421-426
    • /
    • 2016
  • Objective: The purpose of this study was to investigate how different levels of compression exerted on the femoral region (known as the power zone) by coated fabric influences the activation and anaerobic capacity of the rectus femoris. Method: Three different levels of compression on the rectus femoris of the participants, namely 0% (normal condition), 9% (downsize), and 18% (downsize), were tested. The material of the fabric used in this study was nonfunctional polyurethane. Surface electromyography test was used to investigate the activation of the rectus femoris, while the isokinetic test (Cybex, $60^{\circ}/sec$) and Wingate test were used to investigate the maximum anaerobic power. Results: The different compression levels (0%, 9%, and 18%) did not improve the strength and anaerobic capacity of the knee extensor. However, knee flexor interfered with activation of the biceps femoris, which is an agonist for flexion, during 18% compression. Conclusion: Compression garments might improve the stretch shortening cycle effect at the time of eccentric contraction and during transition from eccentric to concentric contraction. Therefore, future studies are required to further investigate these findings.

Composite action of notched circular CFT stub columns under axial compression

  • Ding, Fa-xing;Wen, Bing;Liu, Xue-mei;Wang, Hai-bo
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • This paper conducted both numerical and theoretical studies to investigate the composite action of notched circular concrete-filled steel tubular (CFT) stub columns under axial compression and established a theoretical method to predict their ultimate bearing capacity. 3D finite element (FE) analysis was conducted to simulate the composite action and the results were in good agreement with experimental results on circular CFT stub columns with differently oriented notches in steel tubes. Parametric study was conducted to understand the effects of different parameters on the mechanical behavior of circular CFT stub columns and also the composite action between the steel tube and the core concrete. Based on the results, a theoretical formula was proposed to calculate the ultimate bearing capacity of notched CFT stub columns under compression with consideration of the composite action between the steel tube and the core concrete.

Structural behaviors of sustainable hybrid columns under compression and flexure

  • Wu, Xiang-Guo;Hu, Qiong;Zou, Ruofei;Zhao, Xinyu;Yu, Qun
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.857-873
    • /
    • 2014
  • Structural behaviors of a sustainable hybrid column with the ultra high performance cementitious composites (UHPCC) permanent form under compression and flexure were studied. Critical state and failure stage characters are analyzed for large and small eccentricity cases. A simplified theoretical model is proposed for engineering designs and unified formulas for loading capacity of the hybrid column under compression and flexure loads are derived, including axial force and moment. Non-linear numerical analysis is carried out to verify the theoretical predictions. The theoretical predictions agree well with the numerical results which are verified by the short hybrid column tests recursively. Compared with the traditional reinforced concrete (RC) column, the loading capacity of the sustainable hybrid column is improved significantly due to UHPCC confinements.

A new empirical formula for prediction of the axial compression capacity of CCFT columns

  • Tran, Viet-Linh;Thai, Duc-Kien;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.181-194
    • /
    • 2019
  • This paper presents an efficient approach to generate a new empirical formula to predict the axial compression capacity (ACC) of circular concrete-filled tube (CCFT) columns using the artificial neural network (ANN). A total of 258 test results extracted from the literature were used to develop the ANN models. The ANN model having the highest correlation coefficient (R) and the lowest mean square error (MSE) was determined as the best model. Stability analysis, sensitivity analysis, and a parametric study were carried out to estimate the stability of the ANN model and to investigate the main contributing factors on the ACC of CCFT columns. Stability analysis revealed that the ANN model was more stable than several existing formulae. Whereas, the sensitivity analysis and parametric study showed that the outer diameter of the steel tube was the most sensitive parameter. Additionally, using the validated ANN model, a new empirical formula was derived for predicting the ACC of CCFT columns. Obviously, a higher accuracy of the proposed empirical formula was achieved compared to the existing formulae.

Evaluation and comparison of GRP and FRP applications on the behavior of RCCs made of NC and HSC

  • Shafieinia, Mohsen;Sajedi, Fathollah
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.495-506
    • /
    • 2019
  • This paper presents the results of axial pressure testing on reinforced concrete columns (RCCs) filled with confined normal concrete (NC) and high-strength concrete (HSC) using glass-fiber reinforced plastic pipes (GRP) casing as well as fiber reinforced polymer (FRP). This study aims to evaluate the behavior and mechanical properties of columns confined with GRP casing and FRP wrapping under pressure loads. The major parameters in the experiments were the type of concrete, the effect of GRP casing and FRP wrapping, as well as the number of FRP layers. 12 cylindrical RCCs (150*600) mm were prepared and divided into two groups, NC and HSC, and each group was divided into two parts. In each part, one column was without FRP strengthening layer, a column was wrapped with one FRP layer and another column with two FRP layers. All columns were tested under concentrated compression load. The results of the study showed that the utilization of FRP wrapping and GRP casing improved compression capacity and ductility of RCCs. The addition of one and two layers-FRP wrapping increased compression capacity in the NC group to an average of 18.5% and 26.5% and to an average of 10.2% and 24.8% in the HSC group. Meanwhile, the utilization of GRP casing increased the compression capacity of the columns by 4 times in the NC group and 3.38 times in the HSC group. The results indicated that although both FRP wrapping and GRP casing result in confinement, the GRP casing resulted in increased compression capacity and ductility of the RCCs due to higher confinement. Furthermore, the confinement effect was higher on columns made with NC.

Experimental study on the compression of concrete filled steel tubular latticed columns with variable cross section

  • Yang, Yan;Zhou, Jun;Wei, Jiangang;Huang, Lei;Wu, Qingxiong;Chen, Baochun
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.663-675
    • /
    • 2016
  • The effects of slenderness ratio, eccentricity and column slope on the load-carrying capacities and failure modes of variable and uniform concrete filled steel tubular (CFST) latticed columns under axial and eccentric compression were investigated and compared in this study. The results clearly show that all the CFST latticed columns with variable cross section exhibit an overall failure, which is similar to that of CFST latticed columns with a uniform cross section. The load-carrying capacity decreases with the increase of the slenderness ratio or the eccentricity. For 2-m specimens with a slenderness ratio of 9, the ultimate load-carrying capacity is increased by 3% and 5% for variable CFST latticed columns with a slope of 1:40 and 1:20 as compared with that of uniform CFST latticed columns, respectively. For the eccentrically compressed variable CFST latticed columns, the strain of the columns at the loading side, as well as the difference in the strain, increases from the bottom to the cap, and a more significant increase in strain is observed in the cross section closer to the column cap.

Ultimate and fatigue response of shear dominated full-scale pretensioned concrete box girders

  • Saiidi, M. Saiid;Bush, Anita
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.353-367
    • /
    • 2006
  • Two full-scale, precast, pretensioned box girders were subjected to shear-dominated loading, one under monotonic loads to failure and the other subjected to one-half million cycles of fatigue loads followed by monotonic ultimate loads. The number of cycles was selected to allow for comparison with previous research. The fatigue loads were applied in combination with occasional overloads. In the present study, fatigue loading reduced the shear capacity by only six percent compared to the capacity under monotonic loading. However, previous research on flexure-dominated girders subjected to the same number of repeated loads showed that fatigue loading changed the mode of failure from flexure to shear/flexure and the girder capacity dropped by 14 percent. The comparison of the measured data with calculated shear capacity from five different theoretical methods showed that the ACI code method, the compression field theory, and the modified compression field theory led to reasonable estimates of the shear strength. The truss model led to an overly conservative estimate of the capacity.