• Title/Summary/Keyword: Compression band

Search Result 235, Processing Time 0.021 seconds

Failure Mechanism Evaluation in Normally Consolidated Cohesive Soils by Plane Strain Test with Digital Image Analysis (평면변형률 시험에서 디지털 이미지 해석을 통한 정규압밀 점성토의 파괴거동 분석)

  • Kwak, Tae-Young;Kim, Joon-Young;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.3
    • /
    • pp.49-60
    • /
    • 2016
  • Soil failure is initiated and preceded by forming and progressing of shear band, defined as the localization of deformation into thin zones of soil mass. To understand the failure mechanism of normally consolidated cohesive soil, the spatial distribution and evolution of deformation within the entire specimen need to be evaluated. In this study, vertical compression tests under plane strain condition were performed on reconstituted kaolinite specimens, while capturing digital images of the specimen at regular intervals during shearing. Overall stress-strain behavior from initial to post peak has been analyzed together with spatial distributions of deformations and shear band characteristics from digital images at 4 stages.

A Study on Implementation and Performance of the Low Noise Amplifier for Satellite Mobile Communication System (위성통신용 광대역 저잡음증폭기의 구현 및 성능평가에 관한 연구)

  • 전중성;김동일;배정칠
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.67-76
    • /
    • 2000
  • In this paper, a low noise amplifier has been developed, which is operating at L-band i.e., 1525-1575 MHz. By using resistive decoupling circuits, the resistor dissipates undesired signal in low frequency band. By adopting this design method the stability of the LNA is increased and the input impedance matching is improved. The LNA consists of the low noise GaAs FET ATF-10136 and the internally matched VNA-25. The low LNA is fabricated by both the RP circuit and the self-bias circuits in an aluminum housing. As a result, the characteristics of the LNA implemented show more than 32 dB in gain, lower than 0.5 dB in noise figure, 18.6 dBm output gain in 1 dB gain compression point.

  • PDF

Four-channel GaAs multifunction chips with bottom RF interface for Ka-band SATCOM antennas

  • Jin-Cheol Jeong;Junhan Lim;Dong-Pil Chang
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.323-332
    • /
    • 2024
  • Receiver and transmitter monolithic microwave integrated circuit (MMIC) multifunction chips (MFCs) for active phased-array antennas for Ka-band satellite communication (SATCOM) terminals have been designed and fabricated using a 0.15-㎛ GaAs pseudomorphic high-electron mobility transistor (pHEMT) process. The MFCs consist of four-channel radio frequency (RF) paths and a 4:1 combiner. Each channel provides several functions such as signal amplification, 6-bit phase shifting, and 5-bit attenuation with a 44-bit serial-to-parallel converter (SPC). RF pads are implemented on the bottom side of the chip to remove the parasitic inductance induced by wire bonding. The area of the fabricated chips is 5.2 mm × 4.2 mm. The receiver chip exhibits a gain of 18 dB and a noise figure of 2.0 dB over a frequency range from 17 GHz to 21 GHz with a low direct current (DC) power of 0.36 W. The transmitter chip provides a gain of 20 dB and a 1-dB gain compression point (P1dB) of 18.4 dBm over a frequency range from 28 GHz to 31 GHz with a low DC power of 0.85 W. The P1dB can be increased to 20.6 dBm at a higher bias of +4.5 V.

A Blind Watermarking Technique Using Difference of Approximation Coefficients in Wavelet Domain (웨이블릿 영역에서 근사 계수의 증감 정보를 이용한 블라인드 워터마크)

  • 윤혜진;성영경;최태선
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.219-222
    • /
    • 2002
  • In this paper, we propose a new blind image watermarking method in wavelet domain. It is necessary to find out watermark insertion location in blind watermark. We use horizontal and vertical difference of LL components to select watermark insertion location, because increment or decrement of successive components is rarely changed in LL band. A pseudo-random sequence is used as a watermark. Experimental results show that the proposed method is robust to various kinds of attacks such as JPEG lossy compression, averaging, median filtering, resizing, histogram equalization, and additive Gaussian noise.

  • PDF

Iliotibial Band Stretching in the Modified Thomas Test Position Changes Hip Abduction Angle and Vastus Medialis Activity in Individuals With Tight Iliotibial Band

  • Baik, Seung-min;Jeong, Hyo-jung;Lee, Ji-hyun;Park, Dong-hwan;Cynn, Heon-seock
    • Physical Therapy Korea
    • /
    • v.26 no.1
    • /
    • pp.75-83
    • /
    • 2019
  • Background: A tight iliotibial band (ITB) may lead to lateral patellar maltracking, compression, and tilt, and dominant vatus lateralis (VL) muscle activation relative to vastus medialis oblique (VMO) can laterally displace the patella, which leads to anterior knee pain. Therefore, an effective management technique is needed to stabilize the patella in individuals with tight ITB. Increased stability during the modified Thomas test has the potential to decrease compensatory motion and thus to selectively stretch the ITB. Objects: The purpose of this study was to determine the effects of ITB stretching in the modified Thomas test position on ITB flexibility, patellar translation, and muscle activities of the VMO and VL during quadreceps-setting (QS) exercise in individuals with tight ITB. Methods: Twenty-one subjects with tight ITB were recruited. Digital inclinometer was used to measure the hip adduction angle during the modified Ober test. Universal goniometer was used to measure the hip abduction angle during the modified Thomas test. Ultrasonography was used to measure the patella-condylar distance. Electromyography was performed to collect data of muscle activities. Paired t-test was used to determine the statistical significance between pretest and posttest. Results: The range of hip adduction in modified Ober test increased (p=.04) and the range of hip abduction in the modified Thomas test decreased after ITB stretching (p<.01). There was no difference between lateral patellar translation (p=.18). VMO muscle activity significantly increased after ITB stretching during QS (p<.01). VL muscle activity had no difference after stretching. Conclusion: The ITB stretching in the modified Thomas test position can be suggested as a management method for improving ITB flexibility and VMO muscle activity in individuals with tight ITB.

Stabilization of PAN Nanofibers Using Electron Beam Irradiation and Thermal Compression Technique (전자선 조사와 열압축공정을 이용한 PAN 나노섬유의 안정화 및 특성분석)

  • Kim, Du Yeong;Jeun, Joon Pyo;Shin, Hye Kyoung;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.55-59
    • /
    • 2012
  • Polyacrylonitrile (PAN)-based carbon fibers have been widely used due to their unique chemical, electrical, and mechanical properties. Electron beam irradiation has been extensively employed as means of altering properties of polymeric materials. Electron beam irradiation can induce chemical reactions in materials without any catalyst. Electron beam irradiation may be useful in accelerating the thermal compression stabilization of PAN nanofibers. To investigate the irradiation effect on PAN fibers, PAN nanofibers were irradiated by electron beam at 1,000~5,000 kGy. Irradiated and non-irradiated PAN nanofibers were heated at 180 and $220^{\circ}C$ without applying pressure for 15 min. Then 1 metric ton has been applied for 5 min. SEM images have been found that the fiber kept its morphological behavior after the hot pressing up to electron beam irradiated 1,000 kGy. DSC thermograms showed that the peak temperatures of the exothermic reactions were found to decrease with increasing electron beam irradiation doses and temperature. FT-IR spectra have been found to decrease $C{\equiv}N$ stretch band with increasing the electron beam irradiation dose. These results indicate that the modification of PAN via reactions such as cyclization is significantly enhanced by electron beam irradiation and thermal compression technique.

A Study on Block Processing Approach for Mono-Static Terrain Imaging Radar (모노스태틱 지형 영상 레이더의 블록 처리 기법 연구)

  • Ha, Jong-Soo;Cho, Byung-Lae;Lee, Jung-Soo;Park, Gyu-Churl;Sun, Sun-Gu;Kang, Tae-Ha
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.549-557
    • /
    • 2013
  • This paper describes a block processing approach to detect targets in front of mono-static terrain imaging radar (TIR). It is difficult to employ several conventional imaging methods of the synthetic aperture radar(SAR) because the TIR is an ultra-wide-band(UWB) type of radar and employs a dechirp-on-receive process. To design an available imaging method, a block processing approach which conducts a range compression and an azimuth compression is proposed in this paper. The complete derivation of the proposed approach is presented. The results of simulations and field tests are demonstrated to show the performance and validity of the proposed approach.

Efficient Multispectral Image Compression Using Variable Block Size Vector Quantization (가변 블럭 벡터 양자화를 이용한 효율적인 다분광 화상 데이터 압축)

  • Ban, Seong-Won;Kim, Byeong-Ju;Seok, Jeong-Yeop;Gwon, Seong-Geun;Gwon, Gi-Gu;Kim, Yeong-Chun;Lee, Geon-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.6
    • /
    • pp.703-711
    • /
    • 2001
  • In this paper, we propose efficient multispectral image compression using variable block size vector quantization (VQ). In wavelet domain, we perform the variable block size VQ to remove intraband redundancy for a reference band image that has the lowest spatial variance and the best correlation with other band. And in wavelet domain, we perform the classified interband prediction to remove interband redundancy for the remaining bands. Then error wavelet coefficients between original image and predicted image are residual variable block size vector quantized to reduce prediction error. Experiments on remotely sensed satellite image show that coding efficiency of the proposed method is better than that of the conventional method.

  • PDF

A SAR Signal Processing Algorithm using Wavenumber Domain

  • Won, Joong-Sun;Yoo, Hong-Ryong;Moon, Wooil-M.
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.1-15
    • /
    • 1994
  • Since Seasat SAR mission in 1978, SAR has become one of the most important surface imaging tools in satellite remote sensing SAR achieves high resolution by signal processing synthesizing a larger aperture. Therefore, SAR signal processing along with antenna technology has been centered upon SAR technologies. Thus interpreters of SAR imagery as well as those who involved in signal processing require the knowledge of the principal SAR processing algorithm. Although the conventional range-Doppler approach has been widely adopted by many SAR processors, azimuth compression including the range migration has been problematic. The recent development of the wavenumber domain approace is able to provide high precision SAR focusing algorithm. Compared with the wavenumber domain algorithm derived by applying Born (first) approximation, the transfer function of the conventional range-Doppler algorithm accounts only for the first order approximation of the exact transfer function. The results of a simulation and an actual test using airborne C-band SAR configuration demonstrate the dxcellent performance of the wavenumber domain algorithm.

Ultra-WideBand Channel Measurement with Compressive Sampling for Indoor Localization (실내 위치추정을 위한 Compressive Sampling적용 Ultra-WideBand 채널 측정기법)

  • Kim, Sujin;Myung, Jungho;Kang, Joonhyuk;Sung, Tae-Kyung;Lee, Kwang-Eog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.285-297
    • /
    • 2015
  • In this paper, Ulta-WideBand (UWB) channel measurement and modeling based on compressive sampling (CS) are proposed. The sparsity of the channel impulse response (CIR) of the UWB signal in frequency domain enables the proposed channel measurement to have a low-complexity and to provide a comparable performance compared with the existing approaches especially used for the indoor geo-localization purpose. Furthermore, to improve the performance under noisy situation, the soft thresholding method is also investigated in solving the optimization problem for signal recovery of CS. Via numerical results, the proposed channel measurement and modeling are evaluated with the real measured data in terms of location estimation error, bandwidth, and compression ratio for indoor geo-localization using UWB system.