• Title/Summary/Keyword: Compression Ignition

Search Result 324, Processing Time 0.02 seconds

A Study on the Flow Rate Performance of Plunger-Type High-Pressure Pump for Compression Ignition Engine Using DME as Fuel (DME를 연료로 하는 압축 착화 엔진 용 플런저식 고압펌프의 유량 성능 연구)

  • Jeong, Jaehee;Lee, Sejun;Yu, Donggyu;Lim, Ocktaeck
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.1-8
    • /
    • 2022
  • DME, a clean fuel that is being studied as an alternative fuel for diesel engines, can reduce exhaust gas, which is the one of the crucial problems of diesel engines, and has a very high cetane number and high oxygen content. DME is a fuel has properties similar with LPG and can use the infrastructure of LPG. In this study, The target was to build a database of basic data on the mass flow rate discharged for the performance evaluation of the plunger-type high pressure pump. In this study, the mass flow rate of the DME plunger type high pressure pump was analyzed by changing the common rail pressure and the motor rotation speed. The experimental conditions were the common rail pressure was changed from 300 to 500 bar and the motor rotation speed was changed from 300 to 1000 rpm. In addition, basic mass flow data were constructed to high-pressure pumps for DME. As a result of the experiment, in both cases the mass flow rate was increased.

Reaction Characteristics of Oxidation Catalysts for HCCI Engine (HCCI 엔진용 산화촉매의 반응특성)

  • Park, Sung-Yong;Kim, Hwa-Nam;Choi, Byung-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.165-171
    • /
    • 2010
  • The Homogeneous Charge Compression Ignition (HCCI) engine concept allows for both NOx and particulate matter to be reduced simultaneously, and it is a promising way to meet the next environmental challenges. Unfortunately, HCCI combustion often increases CO and HC emissions. The development of oxidation catalyst (OC) requires high conversion efficiency for CO and HC at low temperature. Conventional oxidation catalyst technologies may not be able to convert these emissions because of the saturation of active catalytic sites. The OC used in this study was 600 cpsi cordierite. Three kinds of OC with different amounts of Pt and Pd were used. The influence of the space velocity (SV), $H_2O$ and $O_2$ concentration was also studied. All types of OCs were found to have over 90% CO conversion efficiencies at $170^{\circ}C$. When in the presence of water vapor, CO conversion was increased, but $C_3H_8$ conversion was decreased. The performance of the OC was not influenced by initial the HC concentration. The 2Pt/Pd catalyst was better in terms of thermal aging than the Pt-only catalyst. The $LOT_{50}$ of both fresh and aged OC was increased with increasing SV and with the presence of $H_2O$.

Experimental Study to Evaluate Thermal and Mechanical Behaviors of Frozen Soils according to Organic Contents (유기물 함유량에 따른 동토 시료의 열적·역학적 거동 평가를 위한 실험적 연구)

  • Sangyeong Park;Hyeontae Park;Hangseok Choi;YoungSeok Kim;Sewon Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.53-62
    • /
    • 2024
  • Recently, development of non-traditional energy such as oil sands has been actively conducted in the cold region such as Canada. Frozen soil has different thermal and mechanical characteristics from general soil due to its high organic contents. This study evaluated the impact of organic matter content on the thermal and mechanical behavior of frozen soil samples collected from Alberta, Canada, and Gangwon Province, South Korea. As the organic content increases, the maximum dry unit weight decreases and the optimum moisture content increases in compaction tests. In uniaxial compression tests under frozen conditions, the strength of the frozen specimens increased as the temperature decreased. The strength of Canada soil sample increased with higher organic matter content at low temperatures. However, the strength of frozen soil was not significantly affected by organic matter content due to the complex behavior and unfrozen water content. Thermal conductivity tests showed higher thermal conductivity in frozen conditions compared to unfrozen conditions, due to the higher thermal conductivity of ice compared to water. These findings provide essential data for geotechnical design and construction in large-scale projects such as oil sands development in cold regions. Further research is needed to explore the impact of organic matter content on different types of frozen soils.

Studies on the Physical Properties of Major Tree Barks Grown in Korea -Genus Pinus, Populus and Quercus- (한국산(韓國産) 주요(主要) 수종(樹種) 수피(樹皮)의 이학적(理學的) 성질(性質)에 관(關)한 연구(硏究) -소나무속(屬), 사시나무속(屬), 참나무속(屬)을 중심(中心)으로-)

  • Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.33 no.1
    • /
    • pp.33-58
    • /
    • 1977
  • A bark comprises about 10 to 20 percents of a typical log by volume, and is generally considered as an unwanted residue rather than a potentially valuable resourses. As the world has been confronted with decreasing forest resources, natural resources pressure dictate that a bark should be a raw material instead of a waste. The utilization of the largely wasted bark of genus Pinus, Quercus, and Populus grown in Korea can be enhanced by learning its physical and mechanical properties. However, the study of tree bark grown in Korea have never been undertaken. In the present paper, an investigative study is carried out on the bark of three genus, eleven species representing not only the major bark trees but major species currently grown in Korea. For each species 20 trees were selected, at Suweon and Kwang-neung areas, on the same basis of the diameter class at the proper harvesting age. One $200cm^2$ segment of bark was obtained from each tree at brest height. Physical properties of bark studied are: bark density, moisture content of green bark (inner-, outer-, and total-bark), fiber saturation point, hysteresis loop, shrinkage, water absorption, specific heat, heat of wetting, thermal conductivity, thermal diffusivity, heat of combustion, and differential thermal analysis. The mechanical properties are studied on bending and compression strength (radial, longitudinal, and tangential). The results may be summarized as follows: 1. The oven-dry specific gravities differ between wood and bark, further more even for a given bark sample, the difference is obersved between inner and outer bark. 2. The oven-dry specific gravity of bark is higher than that of wood. This fact is attributed to the anatomical structure whose characters are manifested by higher content of sieve fiber and sclereids. 3. Except Pinus koraiensis, the oven-dry specific gravity of inner bark is higher than that of outer bark, which results from higher shrinkage of inner bark. 4. The moisture content of bark increases with direct proportion to the composition ratio of sieve components and decreases with higher percent of sclerenchyma and periderm tissues. 5. The possibility of determining fiber saturation point is suggested by the measuring the heat of wetting. With the proposed method, the fiber saturation point of Pinus densiflora lies between 26 and 28%, that of Quercus accutissima ranges from 24 to 28%. These results need be further examined by other methods. 6. Contrary to the behavior of wood, the bark shrinkage is the highest in radial direction and the lowest in longitudinal direction. Quercus serrata and Q. variabilis do not fall in this category. 7. Bark shows the same specific heat as wood, but the heat of wetting of bark is higher than that of wood. In heat conductivity, bark is lower than wood. From the measures of oven-dry specific gravity (${\rho}d$) and moisture fraction specific gravity (${\rho}m$) is devised the following regression equation upon which heat conductivity can be calculated. The calculated heat conductivity of bark is between $0.8{\times}10^{-4}$ and $1.6{\times}10^{-4}cal/cm-sec-deg$. $$K=4.631+11.408{\rho}d+7.628{\rho}m$$ 8. The bark heat diffusivity varies from $8.03{\times}10^{-4}$ to $4.46{\times}10^{-4}cm^2/sec$. From differential thermal analysis, wood shows a higher thermogram than bark under ignition point, but the tendency is reversed above ignition point. 9. The modulus of rupture for static bending strength of bark is proportional to the density of bark which in turn gives the following regression equation. M=243.78X-12.02 The compressive strength of bark is the highest in radial direction, contrary to the behavior of wood, and the compressive strength of longitudinal direction follows the tangential one in decreasing order.

  • PDF